
this print for content only—size & color not accurate spine = 0.838" 360 page count

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

Beginning Hibernate: From
Novice to Professional
Dear Reader,

Hibernate lets you save normal Java™ objects into a relational database, and
retrieve them without having to write a line of SQL. It makes database persist-
ence as natural to use as other Java™ libraries. More and more companies are
using Hibernate in their systems. In our view, this trend is inevitable and
unstoppable—once you have successfully shipped a project with Hibernate,
there is no going back. And Hibernate’s support for and influence over the EJB™

3 specification gives it tremendous credibility in any organization that prefers
standards to proprietary solutions.

Hibernate is definitely a great product, but it is not a simple one. We take a
pragmatic view of the benefits of tools, and we believe that the best way to learn
any new tool is to use it. To that end, we have provided lots of simple working
examples of all the features we describe. We believe that you will find in this
book everything that you need to build a fully functional Hibernate-based
application and become a Hibernate aficionado.

Our aim is to give you a firm understanding of the basic features, such as
creating mapping files and querying databases. With this understanding of the
fundamental features, you will then be in a great position to take advantage of
the more advanced or obscure features that we discuss in later chapters and
appendixes, including the use of the Hibernate plug-ins for Eclipse and Ant, the
EJB™ 3 EntityManager, and the integration of Hibernate with the Spring API.

We congratulate you on your choice of Hibernate, and wish you luck in all
your endeavors.

Dave Minter and Jeff Linwood

Dave Minter, coauthor of

Building Portals with the
Java™ Portlet API

Pro Hibernate 3

US $39.99

Shelve in
Java Programming

User level:
Beginner–Intermediate

Hibernate
M

inter,
Linw

ood

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Dave Minter and Jeff Linwood

Beginning

Hibernate
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-693-5

9 781590 596937

53999

6 89253 59693 7

Jeff Linwood, coauthor of

Professional Struts
Applications

Building Portals with the
Java™ Portlet API

Pro Hibernate 3

Companion
eBook Available

An introduction to all the new features
of the Hibernate 3.2 persistence API

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

THE APRESS ROADMAP

Beginning HibernateBeginning POJOs

Pro Apache Geronimo

Beginning Spring 2 Pro Spring Expert Spring MVC
and Web Flow

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

Beginning

Covers
Hibernate 3.2

Covers
Hibernate 3.2

Covers
Hibernate 3.2

Dave Minter and
Jeff Linwood

Beginning
Hibernate
From Novice to
Professional

6935fm_final.qxd 8/2/06 9:44 PM Page i

Beginning Hibernate: From Novice to Professional

Copyright © 2006 by Dave Minter, Jeff Linwood

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-693-7

ISBN-10 (pbk): 1-59059-693-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
US and other countries.

Apress, Inc. is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Sumit Pal
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Senior Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Damon Larson
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: April Eddy
Indexer: Michael Brinkman
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6935fm_final.qxd 8/2/06 9:44 PM Page ii

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 An Introduction to Hibernate 3 . 1

■CHAPTER 2 Integrating and Configuring Hibernate . 11

■CHAPTER 3 Building a Simple Application . 27

■CHAPTER 4 The Persistence Life Cycle . 63

■CHAPTER 5 An Overview of Mapping . 79

■CHAPTER 6 Mapping with Annotations . 93

■CHAPTER 7 Creating Mappings with Hibernate XML Files 139

■CHAPTER 8 Using the Session . 179

■CHAPTER 9 Searches and Queries . 193

■CHAPTER 10 Advanced Queries Using Criteria . 213

■CHAPTER 11 Filtering the Results of Searches . 225

■APPENDIX A More Advanced Features . 233

■APPENDIX B Hibernate Tools. 265

■APPENDIX C Hibernate and Spring . 299

■APPENDIX D Upgrading from Hibernate 2. 313

■INDEX . 319

iii

6935fm_final.qxd 8/2/06 9:44 PM Page iii

6935fm_final.qxd 8/2/06 9:44 PM Page iv

Contents

About the Authors . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 An Introduction to Hibernate 3 . 1

Plain Old Java Objects (POJOs). 1

Origins of Hibernate and Object-Relational Mapping 3

EJBs As a Persistence Solution . 4

Hibernate As a Persistence Solution. 5

A Thin Solution? . 6

A Hibernate Hello World Example . 6

Mappings . 7

Database Generation. 8

The Relationship of Hibernate 3 with EJB 3.0 . 8

Summary. 9

■CHAPTER 2 Integrating and Configuring Hibernate . 11

The Steps Needed to Integrate and Configure Hibernate 11

Understanding Where Hibernate Fits in Your Java Application 12

Deploying Hibernate . 13

Required Libraries for Running Hibernate 3 . 13

Annotations and Enterprise JavaBeans 3 . 14

JMX and Hibernate . 14

Hibernate Configuration . 14

Hibernate Properties . 16

XML Configuration . 19

Mapping Documents . 20

Naming Strategy . 21

Using a Container-Managed Data Source . 22

The Session Factory . 23

SQL Dialects . 24

Summary . 25
v

6935fm_final.qxd 8/2/06 9:44 PM Page v

■CHAPTER 3 Building a Simple Application. 27

Installing the Tools . 27

Hibernate and Hibernate Tools . 27

HSQLDB 1.8.0. 28

Ant 1.6.5 . 28

The Ant Tasks. 32

Enabling Logging . 32

Creating a Hibernate Configuration File. 33

Running the Message Example. 35

Persisting Multiple Objects . 38

Creating Persistence Classes . 38

Creating the Object Mappings. 42

Creating the Tables . 45

Sessions . 47

The Session and Related Objects . 48

Using the Session . 50

Building DAOs . 52

The Example Client . 56

Summary. 61

■CHAPTER 4 The Persistence Life Cycle . 63

Introduction to the Life Cycle. 63

Entities, Classes, and Names . 64

Identifiers . 65

Entities and Associations . 65

Saving Entities . 69

Object Equality and Identity . 70

Loading Entities . 71

Refreshing Entities . 72

Updating Entities . 73

Deleting Entities. 74

Cascading Operations. 74

Lazy Loading, Proxies, and Collection Wrappers . 76

Querying Objects . 77

Summary. 77

■CHAPTER 5 An Overview of Mapping . 79

Why Mapping Cannot Be Automated . 80

Primary Keys . 82

■CONTENTSvi

6935fm_final.qxd 8/2/06 9:44 PM Page vi

Lazy Loading . 83

Associations . 84

The One-to-One Association . 85

The One-to-Many and Many-to-One Association. 87

The Many-to-Many Association. 88

Applying Mappings to Associations . 89

Types of Mapping . 89

Other Information Represented in Mappings . 90

Specification of (Database) Column Types and Sizes 90

The Mapping of Inheritance Relationships to the Database 90

Primary Key. 91

The Use of SQL Formula–Based Properties . 91

Mandatory and Unique Constraints. 91

Cascading of Operations. 91

Summary. 91

■CHAPTER 6 Mapping with Annotations . 93

Java 5 Features . 93

Creating Hibernate Mappings with Annotations . 93

Cons of Annotations . 94

Pros of Annotations . 94

Choosing Which to Use . 95

Using Annotations in Your Application . 96

EJB 3 Persistence Annotations . 96

Entity Beans with @Entity . 101

Primary Keys with @Id and @GeneratedValue. 101

Generating Primary Key Values with @SequenceGenerator 103

Generating Primary Key Values with @TableGenerator 104

Compound Primary Keys with @Id, @IdClass,
or @EmbeddedId . 105

Database Table Mapping with @Table and
@SecondaryTable . 110

Persisting Basic Types with @Basic. 111

Omitting Persistence with @Transient. 112

Mapping Properties and Fields with @Column. 112

Modeling Entity Relationships . 113

Inheritance . 120

Other EJB 3 Persistence Annotations. 122

Configuring the Annotated Classes. 125

■CONTENTS vii

6935fm_final.qxd 8/2/06 9:44 PM Page vii

Hibernate 3–Specific Persistence Annotations. 126

@Entity . 128

Sorting Collections with @Sort . 129

Ordering Collections with @IndexColumn . 129

Applying Indexes with @Table and @Index 130

Restricting Collections with @Where . 130

Alternative Key Generation Strategies with
@GenericGenerator . 130

Using Ant with Annotation-Based Mappings . 131

Code Listings . 132

Summary. 137

■CHAPTER 7 Creating Mappings with Hibernate XML Files 139

Hibernate Types. 139

Entities . 139

Components . 140

Values . 140

The Anatomy of a Mapping File . 141

The <hibernate-mapping> Element. 141

The <class> Element . 143

The <id> Element . 146

The <property> Element . 148

The <component> Element. 150

The <one-to-one> Element . 151

The <many-to-one> Element . 153

The Collection Elements . 155

Mapping Simple Classes . 162

Mapping Composition . 164

Mapping Other Associations . 167

Mapping Collections . 170

Mapping Inheritance Relationships . 172

One Table per Concrete Class . 173

One Table per Subclass . 174

One Table per Class Hierarchy . 175

More Exotic Mappings . 176

The any Tag . 177

The array Tag . 177

The <dynamic-component> Element . 177

Summary . 178

■CONTENTSviii

6935fm_final.qxd 8/2/06 9:44 PM Page viii

■CHAPTER 8 Using the Session . 179

Sessions . 179

Transactions and Locking . 182

Transactions . 182

Locking . 185

Deadlocks . 186

Caching . 190

Threads . 192

Summary. 192

■CHAPTER 9 Searches and Queries . 193

HQL . 193

Syntax Basics. 194

UPDATE . 194

DELETE . 194

INSERT. 195

SELECT . 195

The First Example with HQL . 196

Logging the Underlying SQL . 200

Commenting the Generated SQL. 200

The from Clause and Aliases. 201

The select Clause and Projection . 201

Using Restrictions with HQL . 202

Using Named Parameters . 203

Paging Through the Result Set . 204

Obtaining a Unique Result . 205

Sorting Results with the order by Clause . 205

Associations . 205

Aggregate Methods . 206

Bulk Updates and Deletes with HQL. 207

Named Queries for HQL and SQL . 208

Using Native SQL . 210

Summary . 211

■CONTENTS ix

6935fm_final.qxd 8/2/06 9:44 PM Page ix

■CHAPTER 10 Advanced Queries Using Criteria. 213

Using the Criteria API . 213

Using Restrictions with Criteria . 214

Paging Through the Result Set . 217

Obtaining a Unique Result . 217

Sorting the Query’s Results . 218

Associations . 218

Distinct Results . 219

Projections and Aggregates . 219

Query By Example (QBE). 221

Summary. 223

■CHAPTER 11 Filtering the Results of Searches . 225

When to Use Filters . 225

Defining Filters. 226

Using Filters in Your Application . 227

A Basic Filtering Example. 227

Summary. 232

■APPENDIX A More Advanced Features . 233

EJB 3 and the EntityManager . 233

Managed Versioning and Optimistic Locking . 236

XML Relational Persistence . 238

Adding Node Information to Mappings. 238

Exporting XML Entities . 240

Importing XML Entities . 242

Other Considerations When Using XML Entities 243

Maps . 243

Limitations of Hibernate . 245

Hand-Rolled SQL . 245

Using a Direct Mapping . 245

Using a View . 247

Putting SQL into a Mapping . 248

Invoking Stored Procedures. 251

Events . 252

An Example Event Listener. 254

■CONTENTSx

6935fm_final.qxd 8/2/06 9:44 PM Page x

Interceptors . 255

An Example Interceptor. 257

Overriding the Default Constructor . 263

Summary. 264

■APPENDIX B Hibernate Tools . 265

The Eclipse Plug-In . 265

Installing the Plug-In . 266

The Boilerplate Project Configuration. 268

Using the Hibernate Console . 271

The Ant Tasks . 284

How the Ant Tasks Work . 285

Reverse Engineering . 291

Templates . 294

Configuring the Classpath . 296

Summary. 297

■APPENDIX C Hibernate and Spring . 299

Spring Libraries . 299

Configuring Hibernate from a Spring Application. 300

Using Hibernate in Your Spring Beans . 303

Declarative Transaction Management . 306

Managing the Session . 308

The Sample Configuration File . 309

Summary. 312

■APPENDIX D Upgrading from Hibernate 2. 313

Package and DTD Changes . 313

New Features and Support for Old Ones . 315

Changes and Deprecated Features. 315

Additions . 316

Changes to Tools and Libraries. 316

Changes with Java 5. 317

Summary. 317

■INDEX . 319

■CONTENTS xi

6935fm_final.qxd 8/2/06 9:44 PM Page xi

6935fm_final.qxd 8/2/06 9:44 PM Page xii

About the Authors

■DAVE MINTER has adored computers since he was small enough to play
in the boxes they came in. He built his first PC from discarded, faulty,
and obsolete components, and considers that to be the foundation of his
career as an integration consultant. Dave is based in London, where he
helps large and small companies build systems that work the way they’re
supposed to. He co-authored Building Portals with the Java Portlet API
(Apress, 2004)and Pro Hibernate 3 (Apress, 2005).

■JEFF LINWOOD has been involved in software programming since he had
a 286 in high school. He became caught up with the Internet when he got
access to a UNIX shell account, and it has been downhill ever since. Jeff
has published articles on several Jakarta Apache open source projects in
Dr. Dobb’s Journal, CNET’s Builder.com, and JavaWorld. Jeff has a bachelor’s
degree in chemical engineering from Carnegie Mellon University. He cur-
rently works for the Gossamer Group in Austin, Texas, on content manage-

ment and web application syndication systems. He gets to play with all the latest open source
projects there. Jeff also co-authored Professional Struts Applications (Apress, 2003), Building
Portals with the Java Portlet API (Apress, 2004), and Pro Hibernate 3 (Apress, 2005). He was a
technical reviewer for Enterprise Java Development on a Budget (Apress, 2003) and Extreme
Programming with Ant (Sams Publishing, 2003).

xiii

6935fm_final.qxd 8/2/06 9:44 PM Page xiii

6935fm_final.qxd 8/2/06 9:44 PM Page xiv

About the Technical Reviewer

■SUMIT PAL has about 12 years of experience with software architecture,
design, and development on a variety of platforms including Java J2EE.
Sumit has worked with the SQL Server replication group while with
Microsoft for two years, and with Oracle’s OLAP Server group while
with Oracle for seven years.

In addition to certifications like IEEE CSDP and J2EE Architect,
Sumit also has a master’s degree in computer science from the Asian
Institute of Technology, Thailand.

Sumit has a keen interest in database internals, algorithms, and search engine technol-
ogy. He has invented some basic generalized algorithms to find divisibility between numbers,
and has also invented divisibility rules for prime numbers less than 100.

Currently, he loves to play as much as he can with his 22-month-old daughter.

xv

6935fm_final.qxd 8/2/06 9:44 PM Page xv

6935fm_final.qxd 8/2/06 9:44 PM Page xvi

Acknowledgments

Dave and Jeff would like to thank the staff of Apress for their consistent good humor in the
face of looming deadlines. Particular thanks are due to Kylie Johnston, our ever-present proj-
ect manager, for keeping this book on the rails, to Damon Larson for correcting our dodgy
spelling and grammar, and to Laura Cheu, our production editor. Thanks also to Steve Anglin
for letting us write for Apress and to Sumit Pal for his contributions as technical reviewer.
Finally, thanks are due to the Hibernate team for producing an awesome piece of software.

Dave would like to thank the amazing Kalani Seymour for offering yet more patience and
sympathy to a grumpy author. He would also like to thank his parents, who really have to take
the blame for the whole computer thing in the first place. He would like to specifically thank
Damon Larson, the copy editor, for getting the bicycle reference, and more generally the deni-
zens of the Sun Java Technology Forums (http://forum.java.sun.com) for bringing up any
number of interesting questions when there were much more pressing things he should have
been doing.

Jeff would like to thank his family, his friends, and his coworkers at the Gossamer Group.

xvii

6935fm_final.qxd 8/2/06 9:44 PM Page xvii

6935fm_final.qxd 8/2/06 9:44 PM Page xviii

Introduction

Hibernate is an amazing piece of software. With a little experience and the power of Java 5
annotations, you can build a complex database-backed system with disturbing ease. Once
you have built a system using Hibernate, you will never want to go back to the traditional
approaches.

While Hibernate is incredibly powerful, it presents a steep learning curve when you first
encounter it—steep learning curves are actually a good thing, as they impart profound insight
once you have scaled them. Yet gaining that insight takes some perseverance and assistance.

Our aim in this book is to help you up that learning curve by presenting you with the mini-
mal requirements of a discrete Hibernate application, explaining the basis of those requirements,
and walking you through an example application built according to them. We then provide addi-
tional material to be digested once the fundamentals are firmly understood. Throughout, we
provide examples rather than relying upon pure discourse.

We hope that you will continue to find this book useful as a reference text long after you
have become an expert on the subject.

Who This Book Is For
This book assumes a good understanding of Java fundamentals and some familiarity with data-
base programming using the Java Database Connectivity (JDBC) API. We don’t expect you to
know anything about Hibernate—but if you buy this book, it will probably be because you have
some exposure to the painful process of building a large database-based system.

All of our examples use open source software—primarily the Hibernate API itself—so you
will not need to purchase any software to get started with Hibernate development.

This book is not an academic text. Our focus is instead on providing extensive examples
and taking a pragmatic approach to the technology that it covers.

To true newcomers to the Hibernate API, we recommend that you read at least the first
three chapters in order before diving into the juicy subjects of later chapters. Very experienced
developers or those with experience with tools similar to Hibernate will want to skim through
the latter half of the book for interesting chapters. Readers familiar with Hibernate will want
to turn to the appendixes for discussion of more arcane topics.

How This Book Is Structured
This book is informally divided into three parts. Chapters 1 through 8 describe the fundamen-
tals of Hibernate, including configuration, the creation of mapping files, and the basic APIs.

Chapters 9 through 11 then describe the use of queries, criteria, and filters to access the
persistent information in more sophisticated ways.

xix

6935fm_final.qxd 8/2/06 9:44 PM Page xix

Finally, the appendixes discuss features that you will use less often, or that are peripheral
to the core Hibernate functionality. The following list describes more fully the contents of
each chapter:

Chapter 1 outlines the purpose of persistence tools and presents excerpts from a simple
example application to show how Hibernate can be applied. It also introduces core termi-
nology and concepts.

Chapter 2 discusses the fundamentals of configuring a Hibernate application. It presents
the basic architecture of Hibernate and discusses how a Hibernate application is inte-
grated into an application.

Chapter 3 presents the example application from Chapter 1 in its entirety, walking you
through the complete process of creating and running the application. It then looks at
a slightly more complex example and introduces the notion of generating the database
schema directly from the mapping files.

Chapter 4 covers the Hibernate life cycle in depth. It discusses the life cycle in the context
of the methods available on the core interfaces. It also introduces key terminology and
discusses the need for cascading and lazy loading.

Chapter 5 explains why mapping information must be retained by Hibernate, and
demonstrates the various types of associations that can be represented by a relational
database. It briefly discusses the other information that can be maintained within a
Hibernate mapping.

Chapter 6 explains how Hibernate lets you use the Java 5 Annotations feature to represent
mapping information. It provides detailed examples for the most important annotations,
and discusses the distinctions between the standard EJB 3 annotations and the proprietary
Hibernate 3 ones.

Chapter 7 explains how the XML-based mapping files can be used to represent mapping
information in Hibernate. It provides examples for all of the most common mapping
types and reference notes for the more obscure ones.

Chapter 8 revisits the Hibernate Session object in detail, explaining the various methods
that it provides. The chapter also discusses the use of transactions, locking, and caching,
and how to use Hibernate in a multithreaded environment.

Chapter 9 discusses how Hibernate can be used to make sophisticated queries against the
underlying relational database using the built-in Hibernate Query Language (HQL).

Chapter 10 introduces the Criteria API, which is a programmatic analog of the query lan-
guage discussed in Chapter 9.

Chapter 11 discusses how the filter API can be used to restrict the results of the queries
introduced in Chapters 9 and 10.

6935fm_final.qxd 8/2/06 9:44 PM Page xx

Appendix A presents a large number of peripheral features that do not warrant more
extensive coverage in a beginners’ text. Basic discussion is given, with examples, of the
use of the Hibernate EntityManager and EJB 3, the support for versioning and optimistic
locking, the provision for persisting and retrieving Dom4J document models directly, the
support for persisting and retrieving maps of information, and some of the obscure limi-
tations of Hibernate and various ways that these can be worked around. It also discusses
the use of events and interceptors.

Appendix B discusses how the Hibernate Tools toolset can be used to enhance develop-
ment with the Eclipse development environment and the Ant build tool. It also explains
how the Ant code-generation tasks can be customized.

Appendix C discusses how Hibernate can be integrated into the Spring API. The integra-
tion of Hibernate as the persistence layer of a Spring application is complex, so we present
a working example, including the entire bean definition file, with discussions of the appro-
priate way to manage the session in the Spring MVC environment, and how Spring can
enforce the proper transactional boundaries when using Hibernate.

Appendix D discusses some topics of interest to developers who are working with a pre-
existing base of code that was built using version 2 of Hibernate. We present the various
approaches to coexisting with Hibernate 3 code and to migrating a Hibernate 2 code base
to the Hibernate 3 API.

Downloading the Code
The source code for this book is available to readers from www.apress.com, in the Source
Code/Download section. Please feel free to visit the Apress web site and download all the
code from there.

Contacting the Authors
We welcome feedback from our readers. If you have any queries or suggestions about this
book, or technical questions about Hibernate, or if you just want to share a really good joke,
you can e-mail Dave Minter at dave@paperstack.com and Jeff Linwood at jlinwood@gmail.com.

■CONTENTS xxi

6935fm_final.qxd 8/2/06 9:44 PM Page xxi

6935fm_final.qxd 8/2/06 9:44 PM Page xxii

An Introduction to Hibernate 3

Most significant development projects involve a relational database. The mainstay of most
commercial applications is the large-scale storage of ordered information, such as catalogs,
customer lists, contract details, published text, and architectural designs.

With the advent of the World Wide Web, the demand for databases has increased. Though
they may not know it, the customers of online bookshops and newspapers are using databases.
Somewhere in the guts of the application a database is being queried and a response is offered.

While the demand for such applications has grown, their creation has not become notice-
ably simpler. Some standardization has occurred—the most successful being the Enterprise
JavaBeans (EJB) standard of Java 2 Enterprise Edition (J2EE), which provides for container-
and bean-managed persistence of entity bean classes. Unfortunately, this and other persist-
ence models all suffer to one degree or another from the mismatch between the relational
model and the object-oriented model. In short, database persistence is difficult.

There are solutions for which EJBs are appropriate, some for which some sort of object-
relational mapping (ORM) like Hibernate is appropriate, and some for which the traditional
approach of direct access via the Java Database Connectivity (JDBC) API is appropriate. We
think that Hibernate represents a good first choice, as it does not preclude the simultaneous
use of these alternative approaches.

To illustrate some of Hibernate’s strengths, in this chapter we will show you a brief exam-
ple using Hibernate and contrast this with the traditional JDBC approach.

Plain Old Java Objects (POJOs)
In our ideal world, it would be trivial to take any Java object and persist it to the database. No
special coding would be required to achieve this, no performance penalty would ensue, and
the result would be totally portable.

In this ideal world, we would perhaps perform such an operation in a manner like that
shown in Listing 1-1.

Listing 1-1. A Rose-Tinted View of Object Persistence

POJO pojo = new POJO();
ORMSolution magic = ORMSolution.getInstance();
magic.save(pojo);

There would be no nasty surprises, no additional work to correlate the class with tables in
the database, and no performance problems.

1

C H A P T E R 1

■ ■ ■

6935ch01_final.qxd 8/2/06 9:34 PM Page 1

Hibernate comes remarkably close to this, at least when compared with the alternatives—
but alas, there are configuration files to create and subtle performance issues to consider.
Hibernate does, however, achieve its fundamental aim—it allows you to store POJOs in the
database. Figure 1-1 shows how Hibernate fits into your application between the client code
and the database.

The common term for the direct persistence of traditional Java objects is object-relational
mapping—that is, mapping the objects in Java to the relational entities in a database.

Where entity beans have to follow a myriad of awkward naming conventions, POJOs
can be any Java object at all. Hibernate allows you to persist POJOs with very few constraints.
Listing 1-2 is an example of a simple POJO to represent a message.

Listing 1-2. The POJO Used in this Chapter’s Examples

public class Message {
private Message() {
}

public Message(String messageText) {
this.messageText = messageText;

}

public String getMessageText() {
return messageText;

}

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 32

Figure 1-1. The role of Hibernate in a Java application

6935ch01_final.qxd 8/2/06 9:34 PM Page 2

public void setMessageText(String messageText) {
this.messageText = messageText;

}

private String message;
}

The sole condescension to Hibernate here is the provision of a private default construc-
tor. Hibernate demands that all POJOs to be stored should provide a default constructor; but
even that can be worked around when third-party classes fail to satisfy this limited require-
ment (we will demonstrate this in Appendix A).

Origins of Hibernate and Object-Relational
Mapping
If Hibernate is the solution, what was the problem? One answer is that doing things the right
way when using JDBC requires a considerable body of code, and careful observation of various
rules (such as those governing connection management) to ensure that your application does
not leak resources. The gargantuan body of code in Listing 1-3 is required to populate the exam-
ple Motd object from the database even when you know the appropriate message identifier.

Listing 1-3. The JDBC Approach to Retrieving the POJO

public static List getMessages(int messageId) throws MessageException {
Connection c = null;
PreparedStatement p = null;
List list = new ArrayList();

try {

Class.forName("org.postgresql.Driver");
c = DriverManager.getConnection(

"jdbc:hsqldb:testdb;shutdown=true",
"hibernate",
"hibernate");

p = c.prepareStatement(
"select message from motd");

ResultSet rs = p.executeQuery();

while(rs.next()) {
String text = rs.getString(1);
list.add(new Message(text));

}
return list;

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3 3

6935ch01_final.qxd 8/2/06 9:34 PM Page 3

} catch (Exception e) {
log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(

"Failed to retrieve message from the database.", e);
} finally {

if (p != null) {
try {

p.close();
} catch (SQLException e) {

log.log(Level.WARNING,
"Could not close ostensibly open statement.", e);

}
}

if (c != null) {
try {

c.close();
} catch (SQLException e) {

log.log(Level.WARNING,
"Could not close ostensibly open connection.", e);

}
}

}
}

Some of this can be trimmed down; there are various techniques that allow you to reduce
the boilerplate code for opening connections and logging problems, but the basic logic that
pulls the object instance from the ResultSet becomes more complex as the object itself does.
Once the object includes references to other objects—or worse yet, other collections of
objects—these “manual” techniques start to look more and more flawed.

EJBs As a Persistence Solution
So why not just use EJBs to retrieve data? Entity beans are, after all, designed to represent,
store, and retrieve data in the database.

Strictly speaking, an entity bean is permitted two types of persistence in an EJB server:
bean-managed persistence (BMP) and container-managed persistence (CMP). In BMP, the
bean itself is responsible for carrying out all of the SQL associated with storing and retrieving
its data—in other words, it requires the author to create the appropriate JDBC logic, complete
with all the boilerplate from Listing 1-3. CMP, on the other hand, requires the container to
carry out the work of storing and retrieving the bean data. So why doesn’t that solve the prob-
lem? Here are just a few of the reasons:

• CMP entity beans require a one-to-one mapping to database tables.

• They do not directly support inheritance relationships.

• They are (by reputation, at least) slow.

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 34

6935ch01_final.qxd 8/2/06 9:34 PM Page 4

• Someone has to determine which bean field maps to which table column.

• They require special method names. If these are not followed correctly, they will fail
silently.

• Entity beans have to reside within a J2EE application server environment—they are
a heavyweight solution.

• They cannot readily be extracted as “general purpose” components for other
applications.

• They cannot be serializable.

• They rarely exist as portable components to be dropped into a foreign application—
you generally have to roll your own EJB solution.

Hibernate As a Persistence Solution
Hibernate addresses a lot of these points, or alleviates some of the pain where it can’t, so we’ll
address the points in turn.

Hibernate does not require you to map one POJO to one table. A POJO can be constructed
out of a selection of table columns, or several POJOs can be persisted into a single table.

Hibernate directly supports inheritance relationships and the various other relationships
between classes.

Though there is some performance overhead while Hibernate starts up and processes its
configuration files, it is generally perceived as being a fast tool. This is very hard to quantify, and,
to some extent, the poor reputation of entity beans may have been earned less from their own
faults than from the mistakes of those designing and deploying such applications. As with all
performance questions, you should carry out tests rather than relying on anecdotal evidence.

In Hibernate it is possible, but not necessary, to specify the mappings at deployment
time. The EJB solution ensures portability of applications across environments, but the Hiber-
nate approach tends to reduce the pain of deploying an application to a new environment.

Hibernate persistence has no requirement for a J2EE application server or any other spe-
cial environment. It is, therefore, a much more suitable solution for stand-alone applications,
client-side application storage, and other environments in which a J2EE server is not immedi-
ately available.

Hibernate uses POJOs that can very easily and naturally be generalized for use in other
applications. There is no direct dependency upon the Hibernate libraries, so POJOs can be put
to any use that does not require persistence; or they can be persisted using any other “POJO-
friendly” mechanism.

Hibernate presents no problems when handling serializable POJOs.
There is a very large body of preexisting code. Any Java object capable of being persisted

to a database is a candidate for Hibernate persistence. Therefore, Hibernate is a natural
replacement for ad hoc solutions, or as the persistence engine for an application that has not
yet had database persistence incorporated into it. Furthermore, by choosing Hibernate per-
sistence, you are not tying yourself to any particular design decisions for the business objects
in your application.

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3 5

6935ch01_final.qxd 8/2/06 9:34 PM Page 5

A Thin Solution?
One of the benefits often touted for Hibernate is that it is a “thin” solution. The problem with
this description is that it is very much an informal term, so it doesn’t really tell you anything
about what attributes Hibernate has that could categorize it as thin.

Hibernate does not require an application server to operate (while EJBs do). It is therefore
applicable in client-side applications in which EJBs are entirely inappropriate. So from this
point of view, it is perhaps thin.

On the other hand, Hibernate makes use of an inordinate number of supporting libraries.
So, if you are considering download times and disk space for an applet, Hibernate will look
somewhat obese; though in these days of fast connections and copious disk space, it is
unlikely to be a deciding factor.

A Hibernate Hello World Example
Listing 1-4 shows how much less boilerplate is required with Hibernate than with the JDBC
approach from Listing 1-3.

Listing 1-4. The Hibernate Approach to Retrieving the POJO

public static List getMessages(int messageId)
throws MessageException

{
SessionFactory sessions =

new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();

List list = session.createQuery("from Message").list();

tx.commit();
tx = null;
return list;

} catch (HibernateException e) {
if (tx != null) tx.rollback();
log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(

"Failed to retrieve message from the database.",e);
} finally {

session.close();
}

}

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 36

6935ch01_final.qxd 8/2/06 9:34 PM Page 6

Even for this trivial example there would be a further reduction in the amount of code
required in a real deployment—particularly in an application-server environment. For exam-
ple, the SessionFactory would normally be created elsewhere and made available to the
application as a Java Native Directory Interface (JNDI) resource.

Note that the manual coding to populate the message object has not been eradicated—
rather, it has been moved into an external configuration file that isolates this implementation
detail from the main logic.

Some of the additional code in the Hibernate 3 example given in Listing 1-4 actually pro-
vides functionality (particularly transactionality and caching) beyond that of the JDBC example.

Mappings
As we have intimated, Hibernate needs something to tell it which tables relate to which
objects (this information is usually provided in an XML mapping file). While some tools
inflict vast, poorly documented XML configuration files on their users, Hibernate offers a
breath of fresh air—you create and associate a small, clear mapping file with each of the
POJOs that you wish to map into the database. You’re permitted to use a single monolithic
configuration file if you prefer, but it’s neither compulsory nor encouraged.

A document type definition (DTD) is provided for all of Hibernate’s configuration files,
so with a good XML editor you should be able to take advantage of autocompletion and
autovalidation of the files as you create them. Java 5 annotations can be used to replace
them entirely.

Listing 1-5 shows the file mapping the Message POJO into the database.

Listing 1-5. The XML File That Maps the POJO to the Database

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="Message" table="Message">

<id type="int" column="id">
<generator class="native"/>

</id>
<property name="message" column="message" type="string"/>

</class>
</hibernate-mapping>

It would be reasonable to ask if the complexity has simply been moved from the applica-
tion code into the XML mapping file. But, in fact, this isn’t really the case for several reasons.

First, the XML file is much easier to edit than a complex population of a POJO from a
result set—and far more easily changed after the fact should your mappings into the database
change at a late stage of development.

Second, we have still done away with the complicated error handling that was required
with the JDBC approach. This is probably the weakest reason, however, since there are various
techniques to minimize this without resorting to Hibernate.

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3 7

6935ch01_final.qxd 8/2/06 9:34 PM Page 7

Finally, it is of particular note that Hibernate solves the problem in which the developer
needs to extract from the database a single object that is related by references to a substantial
number of objects in the database. Hibernate postpones such additional extractions until they
are actually accessed, generally avoiding substantial memory and performance costs.

Database Generation
If you are creating a new Hibernate application around an existing database, creating the
database schema is not an issue; it is presented to you on a platter. If you are starting a new
application, you will need to create the schema, the POJOs, and the mapping directly.

Yet again, Hibernate makes life easy for you. A suite of tools has been made available that
allows you to generate your database directly from the mapping file (generally using an Ant
script). This is even better than it sounds! Hibernate comes with intimate knowledge of various
different dialects of SQL, so the schema will be tailored to your particular database software—
or it can be generated for each different database to which you want to deploy your application.

The Relationship of Hibernate 3 with EJB 3.0
The current version of the EJB standard does not provide an ORM mechanism. However, this
will change. The forthcoming standard for the next (3.0) incarnation of EJB has been devel-
oped as Java Specification Request (JSR) 220, and includes an EJB ORM standard. Why learn
Hibernate when a new standard blessed by Sun has just been released? Because the original
developers of Hibernate are closely involved in the creation of the standard, and as one of the
most successful ORM solutions, Hibernate has heavily influenced the design of EJB 3.0. Hiber-
nate will support those parts of EJB 3.0 pertaining to ORM.

EJB 3.0 supports and encourages the use of transparent persistence of entity beans that
conform to the same minimal set of requirements as the POJOs supported by Hibernate. As
a result of this, Hibernate can be used as the implementation of the EntityManager compo-
nent of an EJB container.

Hibernate’s HQL (Hibernate Query Language) also has a strong correlation with the new
EJB Query Language (EJB QL)—though this is probably due as much to their common ances-
try in Structured Query Language (SQL) as it is to the Hibernate team’s participation in the
standards effort.

EJB 3.0 allows the relationship between entities/POJOs and the database to be described
using annotations that Hibernate supports. The convenience of this approach suggests that it
will become the standard way to maintain these mappings as Java 5 deployments become
commonplace.

Hibernate 3 provides features above and beyond those mandated by the EJB 3.0 standard—
and Hibernate 3 does not require the presence and burden of an application server, making it
suitable for Swing applications, other client-side applications, and lightweight web apps run-
ning without a full J2EE stack (for example, those running on Tomcat).

In short, if you code to Hibernate 3 now, the effort involved in the transition to EJB 3.0
later will be minimal if at all necessary. Meanwhile, Hibernate 3 is available now and has a
persuasive pedigree.

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 38

6935ch01_final.qxd 8/2/06 9:34 PM Page 8

Summary
In this chapter, we have considered the problems and requirements that have driven the
development of Hibernate. We have looked at some of the details of a trivial example appli-
cation written with and without the aid of Hibernate. We have glossed over some of the
implementation details, but we will discuss these in depth in Chapter 3.

In the next chapter, we will look at the architecture of Hibernate and how it is integrated
into your applications.

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3 9

6935ch01_final.qxd 8/2/06 9:34 PM Page 9

6935ch01_final.qxd 8/2/06 9:34 PM Page 10

Integrating and
Configuring Hibernate

Compared to other Java persistence solutions, integrating Hibernate into a Java application is
easy. The designers of Hibernate avoided some of the more common pitfalls and problems with
the existing Java persistence solutions, and created a clean but powerful architecture. In prac-
tice, this means that you do not have to run Hibernate inside any particular J2EE container or
framework—Hibernate 3 only requires Java 2 Standard Edition (J2SE), version 1.3 or greater,
although the new Annotations feature requires J2SE 5.0 (or later).

At first, adding Hibernate to your Java project looks intimidating—the distribution
includes a large set of libraries. To get your first Hibernate application to work, you have to set
up the database, the mapping files, the configuration, and your plain old Java objects (POJOs).
After you have done all that, you need to write the logic in your application that uses the
Hibernate session to actually do something! But once you learn how to integrate Hibernate
with your application, the basics apply for any project that uses Hibernate.

If you already have an application that uses Hibernate 2, the migration path from Hiber-
nate 2 to Hibernate 3 is easy. While Hibernate 3 is not completely backward-compatible, most
of the changes are additional features that you can integrate into your existing application as
you see fit. The Hibernate developers provided implementations of the core Hibernate 2
objects in Hibernate 3 with the Hibernate 2 methods for backward compatibility. We discuss
the differences between Hibernate 2 and Hibernate 3 in more depth in Appendix D.

One of the key features of Hibernate’s design is the principle of least intrusiveness—the
Hibernate developers did not want Hibernate to intrude into your application more than was
necessary. This led to several of the architectural decisions made for Hibernate. In Chapter 1
you saw how Hibernate can be applied to solve persistence problems using conventional Java
objects. In this chapter, we explain some of the configuration details needed to support this
behavior.

The Steps Needed to Integrate and
Configure Hibernate
This chapter explains configuration and integration in detail, but for a quick overview, refer to
the following bulleted list to determine what you need to do to get your first Hibernate appli-
cation up and running. Chapter 3 leads you through the building of a pair of small example

11

C H A P T E R 2

■ ■ ■

6935ch02_final.qxd 8/2/06 9:33 PM Page 11

applications that use Hibernate. The first of these is as simple as we could make it, so it is an
excellent introduction to the following necessary steps:

• Identify the POJOs that have a database representation.

• Identify which properties of those POJOs need to be persisted.

• Create Hibernate XML mapping files for each of the POJOs that map properties to
columns in a table (covered in more detail in Chapter 7).

• Create the database schema using the schema export tool, use an existing database, or
create your own database schema.

• Add the Hibernate Java libraries to your application’s classpath (covered in this chapter).

• Create a Hibernate XML configuration file that points to your database and your XML
mapping files (covered in this chapter).

• In your Java application, create a Hibernate Configuration object that references your
XML configuration file (covered in this chapter).

• Also in your Java application, build a Hibernate SessionFactory object from the
Configuration object (covered in this chapter).

• Finally, retrieve Hibernate Session objects from the SessionFactory, and write your data
access logic for your application (create, retrieve, update, and delete).

Don’t worry if you don’t understand every term or concept in the preceding list. After
reading this chapter, and then going through the example in the next chapter, you will know
what these terms mean and how they fit together.

Understanding Where Hibernate Fits in Your
Java Application
You can call Hibernate from your Java application directly, or you can access Hibernate
through another framework. You can call Hibernate from a Swing application, a servlet, a
portlet, a JSP page, or any other Java application that has access to a database. Typically, you
would use Hibernate to either create a data access layer for an application or replace an
existing data access layer.

Hibernate supports Java Management Extensions (JMX), J2EE Connector Architecture
(JCA), and Java Naming and Directory Interface (JNDI) Java language standards. Using JMX,
you can configure Hibernate while it is running. Hibernate may be deployed as a JCA
connector, and you can use JNDI to obtain a Hibernate session factory in your application.
In addition, Hibernate uses standard Java Database Connectivity (JDBC) database drivers to
access the relational database. Hibernate does not replace JDBC as a database connectivity
layer—Hibernate sits on a level above JDBC.

In addition to the standard Java APIs, many Java web and application frameworks now
integrate with Hibernate. Hibernate’s simple, clean API makes it easy for these frameworks to
support Hibernate in one way or another. The Spring framework provides excellent Hibernate
integration, including generic support for persistence objects, a generic set of persistence

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 12

6935ch02_final.qxd 8/2/06 9:33 PM Page 12

exceptions, and transaction management. Appendix C explains how Hibernate can be config-
ured within a Spring application.

Regardless of the environment that you are integrating Hibernate into, certain requirements
remain constant. You will need to define the configuration details that apply—these are then
represented by a Configuration object. From the Configuration object, a single SessionFactory
object is created; and from this, Session objects are instantiated, through which your application
accesses Hibernate’s representation of the database.

Deploying Hibernate
To integrate Hibernate with your Java application, you will need to use several Java libraries.
The first library is the Java Archive (JAR) file for your JDBC driver, which you will need to find
for your specific relational database. The Hibernate download does not include any JDBC
drivers. You must obtain these yourself—typically, the database provider will offer them as
a separate download; or they may be bundled with your database installation.

Because every relational database—and hence every JDBC driver—behaves slightly differ-
ently, the Hibernate team created dialects to abstract away the differences. These dialects define
the SQL variant and the specific database features to use for each vendor’s database. Every proj-
ect that uses Hibernate must specify one dialect in the Hibernate configuration file. We discuss
dialects in more detail further on in the chapter. The Hibernate web site also contains a platform-
specific FAQ that offers some solutions to several vendor-specific questions.

If you encounter problems getting Hibernate to work with older JDBC versions, disable
the following two JDBC 2–specific features: batch update and scrollable result sets. Use the fol-
lowing configuration values for Hibernate (we discuss the specifics of this configuration later
in this chapter):

hibernate.jdbc.batch_size=0
hibernate.jdbc.use_scrollable_resultsets=false

Once you have configured the JDBC driver, your next step is to deploy hibernate3.jar
with your application. This JAR file is provided with the Hibernate 3 binary distribution. The
file contains the classes in the org.hibernate package, along with several DTD and XML
Schema files. You will then need to deploy the other required libraries.

Required Libraries for Running Hibernate 3
Hibernate requires several libraries beyond hibernate3.jar. These libraries are included in
the lib directory of your Hibernate 3 installation. The up-to-date list of libraries shipped with
Hibernate 3 is in the lib/README.txt file in the Hibernate distribution.

There are several optional libraries included with the Hibernate 3 distribution. If you build
Hibernate from source, a few of these are necessary for Hibernate to compile. Other libraries
provide connection pools, additional caching functionality (the Session cache is mandatory),
and the JCA API. The purpose of each library is detailed in the README file, which also states
which libraries are optional and which are required.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 13

6935ch02_final.qxd 8/2/06 9:33 PM Page 13

Annotations and Enterprise JavaBeans 3
The newly released Enterprise JavaBeans 3 (EJB 3) specification includes a mandatory ORM
component. Hibernate’s design influenced many of the changes (including lightweight per-
sistence and the query language). The configuration requirements for Hibernate in an EJB 3
environment are somewhat different from the default requirements—we discuss this in more
depth in Appendix A. If you have used EJB 1.x or 2.x in the past, you will find EJB 3 to be a
much-needed simplification.

Hibernate 3 permits you to take advantage of the new Annotations feature of Java 5. These
annotations can be used in conjunction with, or in place of, some of the configuration files
that previous versions of Hibernate demanded. These annotations are essentially an EJB 3 fea-
ture, although Hibernate supplies some additional proprietary extensions. In Chapter 6 we
discuss how to use these persistence annotations.

JMX and Hibernate
JMX is a standard API for managing Java applications and components—mostly accessed
through MBeans, which represent wrappers for services and resources. Hibernate provides
two MBeans for JMX: HibernateServiceMBean and StatisticsServiceMBean. Both of these are
interfaces that reside in the org.hibernate.jmx package. The HibernateService and
StatisticsService classes implement the interfaces and reside within the same package. The
HibernateServiceMBean provides getter and setter methods for many of the Hibernate configu-
ration properties, including the data source, transaction strategy, caching, dialect, and other
database options. It also provides a mechanism for adding mapping files to the configuration.
When the HibernateServiceMBean starts, it creates a Configuration object from its properties
and mapping files, and then builds a SessionFactory object. The SessionFactory object binds
to the JNDI location specified on the JMX MBean, and your Java application can then use
standard JNDI calls to obtain the session factory.

The other MBean supplies statistics. Hibernate can log statistics about the performance
of query execution, caching, and object entity operations. Using a JMX console, an adminis-
trator can enable statistics and then access up-to-date performance indicators through the
console.

The advantage of JMX over programmatic access to these features is that administrators
or other non-developers may change properties at run time through a standardized JMX con-
sole that is independent of Hibernate and applies to a range of other frameworks and
components.

Hibernate Configuration
Before you create a session factory, you must tell Hibernate where to find the mapping infor-
mation that defines how your Java classes relate to the database tables. Hibernate also requires
a set of configuration settings, which are usually supplied as a standard Java properties file
called hibernate.properties, or as an XML file named hibernate.cfg.xml.

We recommend using the XML format. This allows you to specify the location of the
mapping information from the configuration files—the alternative (when using properties
files) being to programmatically supply this information to Hibernate through the
Configuration class.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 14

6935ch02_final.qxd 8/2/06 9:33 PM Page 14

Listing 2-1 is a reprint of Listing 1-4 from the previous chapter, which shows a complete
usage of Hibernate from within an application. The parts of this listing that deal with configu-
ration and integration are highlighted.

Listing 2-1. The Hibernate Approach to Retrieving the POJO

public static List getMessages(int messageId)
throws MessageException

{
SessionFactory sessions =

new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
try {

session.beginTransaction();
List list = session.createQuery("from Message").list();
session.getTransaction().commit();
return list;

} catch (HibernateException e) {
if (session.getTransaction() != null)

session.getTransaction().rollback();

log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(

"Failed to retrieve message from the database.",e);
} finally {

session.close();
}

}

As you can see, we called the configure() method on the org.hibernate.cfg.
Configuration class without any arguments. This tells Hibernate to look in the classpath for
the configuration file. The default name for the configuration file is hibernate.cfg.xml—if
you change it, you will need to pass that name explicitly as an argument to the configure()
method. We discuss the configure() method and XML configuration in more detail later in
this chapter.

The configure() method returns an instance of Configuration, which can be used to
obtain a Hibernate SessionFactory instance by calling the buildSessionFactory() method,
as follows:

public SessionFactory buildSessionFactory() throws HibernateException

The SessionFactory is a heavyweight object, and your application should use one
Hibernate SessionFactory object for each discrete database instance that it interacts with.
The SessionFactory relies on the Hibernate configuration properties, which we detail in the
next section of this chapter.

After you have obtained the SessionFactory, you can retrieve Hibernate org.hibernate.
Session objects. While the SessionFactory is a heavyweight object, the Session objects are
lightweight. You perform your persistence operations using Session objects.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 15

6935ch02_final.qxd 8/2/06 9:33 PM Page 15

To sum up, there are three classes that you need to use: Configuration, SessionFactory,
and Session.

• Use the Configuration class to read (and to set) configuration details.

• Use the Configuration object to create a SessionFactory object.

• Use the SessionFactory object to create Session objects as needed.

A typical application will have one Configuration object, which will only be used in
initialization. There will be one SessionFactory object that will exist throughout the life
cycle of the application. Your application will ask this SessionFactory object for a Session
any time it needs to work with the database. The application could retrieve an object, make
some property changes, and then persist it, all within one session, and then close down the
Session object.

Hibernate Properties
Typically, you will specify your Hibernate configuration in a properties file called hibernate.
properties in the root directory of your application’s classpath, or as identified values in a
hibernate.cfg.xml file. Hibernate has an extensive list of properties for configuration (see
Table 2-1).

Unless you provide a JDBC connection programmatically in your application, you must
either configure a JDBC connection here or specify the JNDI name of a container-provided
JDBC connection. You must also configure the SQL dialect appropriate to the database that
you are using. All the other properties take sensible default values, so they do not need to be
explicitly stated.

Table 2-1. Hibernate Configuration Property Names and Descriptions

Property Name Description

hibernate.c3p0.acquire_increment After the connection pool is completely utilized, deter-
mines how many new connections are added to the
pool.

hibernate.c3p0.idle_test_period Determines how long to wait before a connection is
validated.

hibernate.c3p0.max_size The maximum size of the connection pool for C3PO.

hibernate.c3p0.max_statements The upper limit for the SQL statement cache for C3PO.

hibernate.c3p0.min_size The minimum size of the connection pool for C3PO.

hibernate.c3p0.timeout The timeout for C3PO (in seconds).

hibernate.cache.provider_class Specifies a class that implements the org.hibernate.
cache.CacheProvider interface.

hibernate.cache.query_cache_factory Specifies a class that implements the org.hibernate.
cache.QueryCacheFactory interface for getting
QueryCache objects.

hibernate.cache.region_prefix The prefix to use for the name of the cache.

hibernate.cache.use_minimal_puts Configures the cache to favor minimal puts over mini-
mal gets.

hibernate.cache.use_query_cache Specifies whether to use the query cache.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 16

6935ch02_final.qxd 8/2/06 9:33 PM Page 16

Property Name Description

hibernate.cache.use_second_level_cache Determines whether to use the Hibernate second-
level cache.

hibernate.cglib.use_reflection_optimizer Instead of using slower standard Java reflection,
uses the CGLib code generation library to optimize
access to business object properties. The applica-
tion may be slower at startup if this is enabled, but
with faster runtime performance.

hibernate.connection.autocommit Allows autocommit mode to be used for the JDBC
connection (not usually a good idea).

hibernate.connection.datasource The DataSource name for a container-managed
data source.

hibernate.connection.driver_class The JDBC driver class.

hibernate.connection.isolation The transaction isolation level for the JDBC con-
nection.

hibernate.connection.<JDBCpropertyname> Passes any JDBC property you like to the JDBC
connection—for instance,
hibernate.connection.debuglevel=info would
pass a JDBC property called debuglevel.

hibernate.connection.password The database password.

hibernate.connection.pool_size Limits the number of connections waiting in the
Hibernate database connection pool.

hibernate.connection.provider_class The class that implements Hibernate’s
ConnectionProvider interface.

hibernate.connection.url The JDBC URL to the database instance.

hibernate.connection.username The database username.

hibernate.default_catalog The default database catalog name that Hibernate
uses to generate SQL for unqualified table names.

hibernate.default_schema The default database owner name that Hibernate
uses to generate SQL for unqualified table names.

hibernate.dialect The SQL dialect to use for Hibernate; varies by
database. See this chapter’s “SQL Dialects” section.

hibernate.generate_statistics Determines whether statistics are collected.

hibernate.hbm2ddl.auto Automatically creates, updates, or drops the data-
base schema on startup and shut down. There are
three possible values: create, create-drop, and
update. Be careful with create-drop!

hibernate.jdbc.batch_size The maximum batch size for updates.

hibernate.jdbc.batch_versioned_data Determines whether Hibernate batches versioned
data, which depends on your JDBC driver properly
implementing row counts for batch updates.
Hibernate uses the row count to determine
whether the update is successful.

hibernate.jdbc.factory_class The class name of a custom implementation of the
org.hibernate.jdbc.Batcher interface for con-
trolling JDBC prepared statements.

Continued

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 17

6935ch02_final.qxd 8/2/06 9:33 PM Page 17

Table 2-1. Continued

Property Name Description

hibernate.jdbc.fetch_size Determines how many rows the JDBC con-
nection will try to buffer with every fetch. This
is a balance between memory and minimiz-
ing database network traffic.

hibernate.jdbc.use_get_generated_keys Determines Hibernate’s behavior with respect
to generated keys. If this property is set to
true, and if the database driver supports the
JDBC 3.0 generated keys API, Hibernate will
retrieve generated keys from the statement
after it executes an SQL query.

hibernate.jdbc.use_scrollable_resultset Determines whether Hibernate will use JDBC
scrollable result sets for a user-provided JDBC
connection.

hibernate.jdbc.use_streams_for_binary Determines whether binary data is read or
written over JDBC as streams.

hibernate.jndi.class The InitialContext class for JNDI.

hibernate.jndi.<JNDIpropertyname> Passes any JNDI property you like to the JNDI
InitialContext.

hibernate.jndi.url Provides the URL for JNDI.

hibernate.max_fetch_depth Determines how deep Hibernate will go to
fetch the results of an outer join. Used by
Hibernate’s outer join loader.

hibernate.order_updates Orders SQL update statements by each pri-
mary key.

hibernate.proxool Prefix for the Proxool database connection
pool.

hibernate.proxool.existing_pool Configures Proxool with an existing pool.

hibernate.proxool.pool_alias The alias to use for any of the configured
Proxool pools previously mentioned.

hibernate.proxool.properties Path to a Proxool properties file.

hibernate.proxool.xml Path to a Proxool XML configuration file.

hibernate.query.factory_class Specifies an HQL query factory class name.

hibernate.query.substitutions Any possible SQL token substitutions that
Hibernate should use.

hibernate.session_factory_name If set, causes the Hibernate session factory to
bind to this JNDI name.

hibernate.show_sql Logs the generated SQL commands.

hibernate.sql_exception_converter Specifies which SQLExceptionConverter to use
to convert SQLExceptions into
JDBCExceptions.

hibernate.transaction.auto_close_session Automatically closes the session after a trans-
action.

hibernate.transaction.factory_class Specifies a class that implements the
org.hibernate.transaction.
TransactionFactory interface.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 18

6935ch02_final.qxd 8/2/06 9:33 PM Page 18

Property Name Description

hibernate.transaction.flush_before_completion Automatically flushes before completion.

hibernate.transaction.manager_lookup_class Specifies a class that implements the
org.hibernate.transaction.
TransactionManagerLookup interface.

hibernate.use_identifier_rollback Determines whether Hibernate uses identifier
rollback.

hibernate.use_sql_comments Generates SQL with comments.

hibernate.wrap_result_sets Turns on JDBC result set wrapping with col-
umn names.

hibernate.xml.output_stylesheet Specifies an XSLT stylesheet for Hibernate’s
XML data binder. Requires xalan.jar.

jta.UserTransaction The JNDI name for the UserTransaction
object.

XML Configuration
As we have already mentioned, Hibernate offers XML configuration capabilities. To use them,
you must create an XML configuration file, normally called hibernate.cfg.xml, and place it in
the root of your application’s classpath. The XML configuration file must conform to the
Hibernate 3 Configuration DTD, which is available from http://hibernate.sourceforge.net/
hibernate-configuration-3.0.dtd.

Listing 2-2 shows an example XML configuration for Hibernate.

Listing 2-2. An XML Configuration for Hibernate

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM ➥

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>

<session-factory>
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>
<mapping jar="hibernate-mappings.jar"/>
<mapping resource="com/apress/hibernate/User.hbm.xml"/>

</session-factory>
</hibernate-configuration>

When you use the XML configuration file, you do not need to use the hibernate. prefix
for properties. As you can see in Listing 2-2, the dialect property is simply dialect, not
hibernate.dialect. However, we usually elect to include the prefix for the sake of consistency.
If you are already using hibernate.properties, hibernate.cfg.xml will override any settings
in hibernate.properties.

In addition to specifying the properties listed in Table 2-1 to configure a session factory,
with the <property> tag you can also configure mapping files, caching, listeners, and the JNDI
name for the session factory in the XML configuration. Listing 2-2 includes two <mapping> ele-
ments, which identify a JAR file containing mapping files, and a specific mapping file available

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 19

6935ch02_final.qxd 8/2/06 9:33 PM Page 19

on the classpath, respectively. We discuss mapping file configuration in the next section and
caching in Chapter 9.

After placing your XML configuration file in the root directory of the classpath, you will
need to call one of the configure() methods on your application’s Configuration object. With
the default file name (hibernate.cfg.xml), you can call configure() with no arguments. If you
used a different file name (for instance, because you have production, staging, user accept-
ance test, and development environments, with different databases), use one of the following
methods on a Configuration object:

• public Configuration configure(String) throws HibernateException: Loads the XML
configuration from a resource accessible by the current thread’s context class loader

• public Configuration configure(URL) throws HibernateException: Retrieves the XML
configuration from a valid URL

• public Configuration configure(File) throws HibernateException: Uses an XML
configuration file on the file system

Mapping Documents
Once you have created your mapping documents for Hibernate, it needs to know where to
find them. Before you create the session factory, add them to your Configuration object, or
specify them in the hibernate.cfg.xml XML configuration file. If you choose to add the map-
ping documents directly to an instance of Configuration, use one of the following methods:

• addFile(String): Uses the path to an XML mapping document for Hibernate. An
example of this would be com/hibernatebook/config/Example.hbm.xml

• addFile(File): Uses a File object that represents an XML mapping document

• addClass(Class): Translates a Java class name into a file name, which Hibernate then
loads as an input stream from the Java class’s class loader; for example, Hibernate
would look for the file called com/hibernatebook/config/Example.hbm.xml for a class
named com.hibernatebook.config.Example

• addJar(File): Adds any mapping documents (*.hbm.xml) in the specified JAR file to the
Configuration object

• addDirectory(File): Adds any mapping documents (*.hbm.xml) in the specified direc-
tory to the Configuration object

The following methods also add mapping documents to the Configuration object, but
you are unlikely to need them unless you have specialized application deployment issues:

• addXML(String): Takes a String object that contains the Hibernate mapping XML.

• addURL(URL): Requires a valid URL to the Hibernate mapping XML.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 20

6935ch02_final.qxd 8/2/06 9:33 PM Page 20

• addCacheableFile(File): Saves time when Hibernate loads XML mapping files at
startup by caching XML mapping documents on the file system as serialized DOM
Document objects. This improves performance after the first load. Takes a File object
that points to the XML mapping document, not the .bin cache file.

• addCacheableFile(String): Same as addCacheableFile(File), except this method
takes a path to the file. Hibernate constructs a File object out of the path and then
passes it to addCacheableFile(File).

• addDocument(Document): Takes a valid DOM Document object containing the XML.

The addJar() and addDirectory() methods are the most convenient, because they allow
you to load all of your Hibernate mapping documents at one time. Both of these methods
simplify code configuration, layout, and refactoring, because you do not have to separately
maintain code that configures each document. We find that it is easy to create a mapping
document and then forget to add it to your application’s Hibernate initialization code; using
either of these methods helps to avoid that problem.

As an alternative to specifying the locations of the mapping information in the code, you
can instead use the <mapping> element in the hibernate.cfg.xml XML configuration file. The
<mapping> element has four possible attributes—jar, resource, file, and class—which map
to the addJar(), addResource(), addFile(), and addClass() methods on the Configuration
object.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM ➥

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>

<session-factory>
<mapping jar="hibernate-mappings.jar"/>
<mapping resource="com/apress/hibernate/User.hbm.xml"/>

</session-factory>
</hibernate-configuration>

Whether you use the XML configuration file or directly specify the mapping files in code is
up to you—we suggest that you stick to the approach that you are most comfortable with.

Naming Strategy
If your project has an existing standard for naming database tables or columns, or you would
like to specify exactly how Hibernate maps Java class names to database table names, you can
use Hibernate’s naming strategy functionality. Custom naming strategies specify how Hiber-
nate maps Java class names to database table names, properties to column names, and the
name of a table used to hold a collection of properties for a Java class. A naming strategy may
also override the table names and column names specified in the Hibernate mapping docu-
ments—for instance, you might use this to enforce a consistent application-wide prefix to
table names.

Although you can explicitly specify the names of all of the tables and columns in the map-
ping document, if you have clear and consistent rules for naming already, implementing a
custom naming strategy can save a lot of time and frustration. Equally, if you decide to add

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 21

6935ch02_final.qxd 8/2/06 9:33 PM Page 21

a prefix to all database table names after the fact, it is easy to do so with a naming strategy,
while it would be a pain to correct these in every Hibernate mapping document.

■Note Using Hibernate with an existing well-specified database often means creating a custom naming
strategy for Hibernate. If the database tables have a prefix, it may be cleaner to implement a naming strategy
that adds that prefix than to specify the full table name with a prefix in every Hibernate mapping document.

A custom naming strategy must implement the org.hibernate.cfg.NamingStrategy inter-
face or extend one of the two provided naming strategy classes, org.hibernate.cfg.
DefaultNamingStrategy or org.hibernate.cfg.ImprovedNamingStrategy. The default naming
strategy simply returns the unqualified Java class name as the database table name. For
instance, the table name for the Java class com.hibernatebook.AccessGroups would be
AccessGroups. The column name would be the same as the property name, and the collection
table would have the same name as the property.

The improved naming strategy adds underscores in place of uppercase letters in mixed-
case table and column names, and then lowercases the name. For instance, the same com.
hibernatebook.AccessGroups Java class would correspond to a database table named
access_groups.

Neither of these naming strategies takes into account the case in which you have two
classes with the same name in different packages in your application. For instance, if you had
two classes, com.hibernatebook.webcast.Group and com.hibernatebook.security.Group, both
would default to a table named Group, which is not what you want. You would have to explic-
itly set the table name in the mapping of at least one class.

Once you have created a naming strategy, pass an instance of it to the Configuration
object’s setNamingStrategy() method, as follows:

public Configuration setNamingStrategy(NamingStrategy namingStrategy)

You must call this method before building the session factory from the Configuration. For
example, here’s the code for using the ImprovedNamingStrategy naming strategy:

Configuration conf = new Configuration()
conf.setNamingStrategy(ImprovedNamingStrategy.INSTANCE);

Using a Container-Managed Data Source
When running in an environment with a JNDI server, Hibernate can obtain a data source
through a JNDI lookup. You must use the hibernate.connection.datasource property to spec-
ify the JNDI name, and then you may set the optional hibernate.jndi.url and hibernate.
jndi.class properties to specify the location of the container’s JNDI provider and the class
name of the container’s implementation of the JNDI InitialContextFactory interface. You
may also use the hibernate.connection.username and hibernate.connection.password prop-
erties to specify the database user your application uses. For example, your hibernate.
properties file might have these lines for a WebLogic 7.0 managed data source:

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 22

6935ch02_final.qxd 8/2/06 9:33 PM Page 22

hibernate.connection.datasource=java:/comp/env/jdbc/TestDB
hibernate.connection.username=dbuser
hibernate.connection.password=dbpassword
hibernate.jndi.url=t3://localhost:7001
hibernate.jndi.class=weblogic.jndi.WLInitialContextFactory

Typically only the mandatory datasource property is needed.

The Session Factory
You use the Hibernate session factory to create Session objects that manage connection data,
caching, and mappings. Your application is responsible for managing the session factory. You
should only have one session factory unless you are using Hibernate to connect to two or
more database instances with different settings, in which case you should still have one ses-
sion factory for each database instance.

In order to maintain backward compatibility with Hibernate 2, the Hibernate 3 session
factory can also create org.hibernate.classic.Session session objects. These “classic” session
objects implement all of the Hibernate 3 session functionality in addition to the deprecated
Hibernate 2 session methods. We briefly discuss the changes in core functionality between
Hibernate 2 and 3 in Appendix D.

You obtain a session from the SessionFactory object using one of the four openSession()
methods. The no-argument openSession() method opens a session, with the database con-
nection and interceptor specified in the SessionFactory’s original configuration. You can
explicitly pass a JDBC connection to use, a Hibernate interceptor, or both as arguments to the
remaining openSession() methods.

public org.hibernate.classic.Session openSession()
throws HibernateException

public org.hibernate.classic.Session openSession(Interceptor interceptor)
throws HibernateException

public org.hibernate.classic.Session openSession(
Connection connection,
Interceptor interceptor)

public org.hibernate.classic.Session openSession()
throws HibernateException

We discuss Hibernate interceptors in Appendix A. You can also retrieve metadata and
statistics from the SessionFactory.

The other important method on the session factory is close(). The close() method
releases all the resource information used by the session factory and made available to the
Session objects. It is therefore important that any related Session objects have been closed
before invoking this to close the session factory.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 23

6935ch02_final.qxd 8/2/06 9:33 PM Page 23

When the session factory closes, it destroys the cache for the entity persisters and collec-
tion persisters, and also destroys the query cache and the timestamps cache. Then the session
factory closes the JDBC connection provider and removes the current instance from its JNDI
object factory binding.

public void close() throws HibernateException

The Hibernate developers designed their implementation of the SessionFactory interface
to be scalable in a multithreaded application.

SQL Dialects
JDBC abstracts away many of the underlying connection details for each relational database,
yet every relational database supports a different set of features and uses a slightly different
version of SQL. Among the features that differ between relational databases are the syntax for
marking identity columns, column data types, available SQL functions, foreign key constraint
syntax, limits, GUID support, and support for cascade deletes.

Hibernate abstracts away all of these changes into dialect classes. Each supported data-
base has its own dialect. When Hibernate constructs an SQL query, it obtains appropriate
syntax information for the current database from the dialect. Hibernate 3 comes with over 20
different dialects. All of these standard dialects are supplied within the org.hibernate.dialect
package. Table 2-2 shows the supported databases in Hibernate 3 and their corresponding
dialect classes.

Table 2-2. Supported Databases and Dialect Class Names for Hibernate 3

Database Name Dialect Class Name

DB2/390 DB2390Dialect

DB2/400 DB2400Dialect

DB2 DB2Dialect

Derby DerbyDialect

Firebird FirebirdDialect

FrontBase FrontBaseDialect

HSQLDB HSQLDialect

Informix InformixDialect

Ingres IngresDialect

InterBase InterbaseDialect

JDataStore JDataStoreDialect

Mimer SQL MimerSQLDialect

Mckoi MckoiDialect

MySQL 5 MySQL5Dialect

MySQL (< 5.x) MySQLDialect

MySQL with InnoDB tables MySQLInnoDBDialect

MySQL with MyISAM tables MySQLMyISAMDialect

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 24

6935ch02_final.qxd 8/2/06 9:33 PM Page 24

Database Name Dialect Class Name

Oracle9i Oracle9Dialect

Oracle9i (DataDirect drivers) DataDirectOracle9Dialect

Oracle (< 9.x) OracleDialect

PointBase PointbaseDialect

PostgreSQL PostgreSQLDialect

Progress ProgressDialect

RDMS for Unisys OS2200 RDMSOS2200Dialect

SAP DB SAPDBDialect

SQL Server SQLServerDialect

Sybase SybaseDialect

Sybase 11 Sybase11Dialect

Sybase Anywhere SybaseAnywhereDialect

Times Ten 5.1 TimesTenDialect

Configure your chosen dialect by supplying the fully qualified dialect class name as the
value for the hibernate.dialect configuration property.

Through Hibernate Query Language (HQL), Hibernate provides object-querying function-
ality that is database-independent. Hibernate translates the HQL queries into database-specific
SQL using hints provided by the SQL dialect classes. We discuss HQL in more detail in Chapter 9.

Hibernate also provides a native SQL facility, which is especially useful for porting exist-
ing JDBC applications to Hibernate or for improving the performance of complicated queries.

Summary
In this chapter, we explained how to integrate Hibernate into your Java applications. We also
detailed the configuration options for Hibernate, including the available Hibernate property
settings. We discussed how naming strategies aid in the creation of consistent company- or
application-wide database table-naming conventions, and how they help you to map your
Hibernate classes to databases with existing naming conventions. Finally, we discussed how
Hibernate uses dialects to manage the different behaviors of different database platforms.

In the next chapter, we build and configure a pair of simple Hibernate applications that
illustrate the core Hibernate concepts discussed in the first two chapters.

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE 25

6935ch02_final.qxd 8/2/06 9:33 PM Page 25

6935ch02_final.qxd 8/2/06 9:33 PM Page 26

Building a Simple Application

In this chapter, you’ll take another look at some of the steps necessary to get the example
from Chapter 1 up and running. You’ll also build a somewhat larger application from scratch.
All of the code in this book is available for download from the Apress site (www.apress.com).

Installing the Tools
To run the examples in this chapter, you will need to install a number of tools. You will require
a JDK, the Hibernate and Hibernate Tools distributions, the Ant build tool, and the HSQLDB
database. Table 3-1 lists the specific tools you will need and where you can find them.

Table 3-1. The Tools Used in This Book

Tool Version Download Location

Hibernate 3.2.0 http://hibernate.org

Hibernate Tools 3.1 http://hibernate.org

Ant 1.6.5 http://ant.apache.org

HSQLDB 1.8.0.2 http://hsqldb.org

Hibernate and Hibernate Tools
The latest version of Hibernate is always available from http://hibernate.org, under the
left-hand menu link named “Download.” Various older versions and additional libraries are
available from the resulting page, but you should select Hibernate Core 3.2.0 or a later ver-
sion. At the time of writing, this is still a release-candidate version, but we expect the final
release to be available by the time you read this book—if it is not, and you don’t want to use
a pre-release version, then most of the examples will work equally well with the previous
3.1.0 release of the Hibernate core. Download the archive and unpack it to a local directory.
The unpacked archive contains all the source code for Hibernate itself, a JAR library built
from this source, and all the library files that are necessary to run the sample.

You should then download Hibernate Tools from the same site. At the time of writing, it
is currently at version 3.1 (again, this is currently in a late beta release, but we recommend
using the beta version, rather that its inferior predecessors, if a final 3.1 version has not been
released yet). Hibernate Tools provides various plug-ins for the Ant build tool and the free
Eclipse IDE. In this chapter, we make use of the Ant plug-ins only, but we discuss the Eclipse

27

C H A P T E R 3

■ ■ ■

6935ch03_final.qxd 8/2/06 9:36 PM Page 27

features in Appendix B. Again, the archive should be downloaded and unpacked to a local
directory. This archive does not include the source code (which is available elsewhere on the
www.hibernate.org site, if you decide to take a look at it).

HSQLDB 1.8.0
The database we will be using in our examples is the HSQL database. This is written in Java
and is freely available open source software. While we used version 1.8.0.2 for our exam-
ples, we expect that any later version will be suitable. HSQL is derived from code originally
released as “Hypersonic.” You may encounter the term in some of the HSQL documenta-
tion and should treat it as synonymous with “HSQL.” We may also refer to the product as
HSQLDB when it might otherwise be mistaken for Hibernate Query Language (HQL),
whose acronym is distressingly similar!

Our examples are tailored to HSQL because HSQL will run on any of the platforms that
Hibernate will run on, and because HSQL is freely available with minimal installation require-
ments. However, if you want to run the examples with your own database, then the differences
should boil down to the following:

• The Hibernate dialect class

• The JDBC driver

• The connection URL for the database

• The username for the database

• The password for the database

You will see where these can be specified later in this chapter. You will notice that where
we specify the URL for connection to the database, we often append a shutdown=true attrib-
ute. This fixes a minor problem in which HSQLDB does not write its changes to disk until a
Connection object is closed (something that may never happen when a connection is being
managed by Hibernate’s own connection pooling logic). This is not necessary on non-
embedded databases.

Ant 1.6.5
You will want to install the Ant build tool. We will not attempt to explain the build.xml format
in detail; if you are familiar with Ant, then the example build script provided in this chapter will
be enough to get you started—if not, then Ant is a topic in its own right. We would recommend
Enterprise Java Development on a Budget, by Christopher M. Judd and Brian Sam-Bodden
(Apress, 2004), for good coverage of open source tools such as Ant.

While Ant in general lies outside the scope of this book, we will discuss the use of the
Hibernate tasks used by our scripts.

Listing 3-1 provides the Ant script to build the example for this chapter.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION28

6935ch03_final.qxd 8/2/06 9:36 PM Page 28

Listing 3-1. An Ant Script to Build the Chapter 3 Examples

<project name="sample">

<property file="build.properties"/>

<property name="src" location="src"/>
<property name="bin" location="bin"/>
<property name="sql" location="sql"/>
<property name="hibernate.tools"

value="${hibernate.tools.home}${hibernate.tools.path}"/>

<path id="classpath.base">
<pathelement location="${src}"/>
<pathelement location="${bin}"/>
<pathelement location="${hibernate.home}/hibernate3.jar"/>
<fileset dir="${hibernate.home}/lib" includes="**/*.jar"/>
<pathelement location="${hsql.home}/lib/hsqldb.jar"/>

</path>

<path id="classpath.tools">
<path refid="classpath.base"/>
<pathelement

location="${hibernate.tools}/hibernate-tools.jar"/>
</path>

<taskdef name="htools"
classname="org.hibernate.tool.ant.HibernateToolTask"
classpathref="classpath.tools"/>

<target name="exportDDL" depends="compile">
<htools destdir="${sql}">

<classpath refid="classpath.tools"/>
<configuration

configurationfile="${src}/hibernate.cfg.xml"/>
<hbm2ddl drop="true" outputfilename="sample.sql"/>

</htools>
</target>

<target name="compile">
<javac srcdir="${src}" destdir="${bin}" classpathref="classpath.base"/>

</target>

<target name="populateMessages" depends="compile">
<java classname="sample.PopulateMessages" classpathref="classpath.base"/>

</target>

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 29

6935ch03_final.qxd 8/2/06 9:36 PM Page 29

<target name="listMessages" depends="compile">
<java classname="sample.ListMessages" classpathref="classpath.base"/>

</target>

<target name="createUsers" depends="compile">
<java classname="sample.CreateUser" classpathref="classpath.base">

<arg value="dave"/>
<arg value="dodgy"/>

</java>
<java classname="sample.CreateUser" classpathref="classpath.base">

<arg value="jeff"/>
<arg value="jammy"/>

</java>
</target>

<target name="createCategories" depends="compile">
<java classname="sample.CreateCategory" classpathref="classpath.base">

<arg value="retro"/>
</java>
<java classname="sample.CreateCategory" classpathref="classpath.base">

<arg value="kitsch"/>
</java>

</target>

<target name="postAdverts" depends="compile">
<java classname="sample.PostAdvert" classpathref="classpath.base">

<arg value="dave"/>
<arg value="retro"/>
<arg value="Sinclair Spectrum for sale"/>
<arg value="48k original box and packaging"/>

</java>
<java classname="sample.PostAdvert" classpathref="classpath.base">

<arg value="dave"/>
<arg value="kitsch"/>
<arg value="Commemorative Plates"/>
<arg value="Kitten and puppies design"/>

</java>
<java classname="sample.PostAdvert" classpathref="classpath.base">

<arg value="jeff"/>
<arg value="retro"/>
<arg value="Atari 2600 wanted"/>
<arg value="Must have original joysticks."/>

</java>

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION30

6935ch03_final.qxd 8/2/06 9:36 PM Page 30

<java classname="sample.PostAdvert" classpathref="classpath.base">
<arg value="jeff"/>
<arg value="kitsch"/>
<arg value="Inflatable Sofa"/>
<arg value="Leopard skin pattern. Nice."/>

</java>
</target>

<target name="listAdverts" depends="compile">
<java classname="sample.ListAdverts" classpathref="classpath.base"/>

</target>

</project>

The properties file imported in the first line provides the paths to your installed libraries,
and you should adjust it as appropriate (as shown in Listing 3-2). If you unpack Hibernate 3.2.0,
it will create a directory called hibernate-3.2, which we have renamed to the full version path;
we have done something similar with the HSQL database directory.

The Hibernate Tools archive currently unpacks to two directories (plugins and features).
We have created a parent directory to contain these. The path to the appropriate JAR file
(hibernate-tools.jar) within the unpacked directory is dependent upon the specific Hiber-
nate Tools version, so we have added the hibernate.tools.path property to point our build
script at this.

Listing 3-2. The build.properties File to Configure the Ant Script

Path to the hibernate install directory
hibernate.home=/hibernate/hibernate-3.2.0

Path to the hibernate-tools install directory
hibernate.tools.home=/hibernate/hibernate-tools-3.1

Path to hibernate-tools.jar relative to hibernate.tools.home
hibernate.tools.path=/plugins/org.hibernate.eclipse_3.1.0/lib/tools

Path to the HSQL DB install directory
hsql.home=/hsqldb/hsqldb-1.8.0.2

Aside from the configuration settings, the only oddity in the build.xml file is the configu-
ration and use of a Hibernate-specific Ant task. The taskdef (shown in Listing 3-3) makes this
task available for use, using the appropriate classes from the tools.jar file.

Listing 3-3. Defining the Hibernate Tools Ant Tasks

<taskdef name="htools"
classname="org.hibernate.tool.ant.HibernateToolTask"
classpathref="classpath.tools"/>

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 31

6935ch03_final.qxd 8/2/06 9:36 PM Page 31

This task provides several subtasks, but in this chapter we will only make use of the
hbm2ddl subtask. This reads in the mapping and configuration files and generates Data Defini-
tion Language (DDL) scripts to create an appropriate schema in the database to represent our
entities.

Table 3-2 shows the basic directories that our build script assumes, relative to the exam-
ple project’s root.

Table 3-2. The Project Directories

Directory Contents

src Source code and configuration files (excluding those directly related to the build)

bin Compiled class files

sql Generated DDL scripts

The root of the project contains the build script and build configuration file; it will also
contain the database files generated by HSQL when the exportDDL task is run.

The Ant Tasks
Table 3-3 shows the tasks contained in the Ant build script.

Table 3-3. The Tasks Available in the Example Ant Script

Task Action

exportDDL Creates the appropriate database objects. It also generates a script that can
be run against an HSQL database to re-create these objects if necessary.

compile Builds the class files. This task is a dependency of all the tasks except
exportDDL (which does not require the class files), so it is not necessary to
invoke it directly.

populateMessages Populates the database with a sample message.

listMessages Lists all messages stored in the database by populateMessages.

createUsers Creates a pair of users in the database for the Advert example.

createCategories Creates a pair of categories in the database for the Advert example.

postAdverts Creates several adverts in the database for the Advert example.

listAdverts Lists the adverts in the database for the Advert example.

Enabling Logging
Before going on to run any of the examples in this chapter, you will want to create a
log4j.properties file in the classpath. A suitable example is provided with the Hibernate
tools in the etc directory of the unpacked archive.

Our example includes this file in the src directory of our project and places that direc-
tory itself on the classpath. In some circumstances—such as when building a JAR file for
inclusion in other projects—it may be better to copy the appropriate properties file(s) into
the target directory with the class files.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION32

6935ch03_final.qxd 8/2/06 9:36 PM Page 32

Creating a Hibernate Configuration File
There are several ways that Hibernate can be given all of the information that it needs to connect
to the database and determine its mappings. For our Message example, we used the configura-
tion file hibernate.cfg.xml placed in our project’s src directory and given in Listing 3-4.

Listing 3-4. The Message Application’s Mapping File

<?xml version='1.0' encoding='utf-8'?>
<session-factory>
<property name="hibernate.connection.url">

jdbc:hsqldb:file:testdb;shutdown=true
</property>
<property name="hibernate.connection.driver_class">

org.hsqldb.jdbcDriver
</property>
<property name="hibernate.connection.username">sa</property>
<property name="hibernate.connection.password"></property>
<property name="hibernate.connection.pool_size">0</property>
<property name="hibernate.dialect">

org.hibernate.dialect.HSQLDialect
</property>
<property name="hibernate.show_sql">false</property>

<!-- "Import" the mapping resources here -->
<mapping resource="sample/entity/Message.hbm.xml"/>

</session-factory>
</hibernate-configuration>

The various database-related fields (hibernate.connection.*) should look pretty familiar
from setting up JDBC connections, with the exception of the hibernate.connection.pool
property, which is used to disable a feature (connection pooling) that causes problems when
using the HSQL database. The show_sql value, set to false in our example, is extremely useful
when debugging problems with your programs—when set to true, all of the SQL prepared by
Hibernate is logged to the standard output stream (i.e., the console).

The SQL dialects, discussed in Chapter 2, allow you to select the database type that Hiber-
nate will be talking to. You must select a dialect, even if it is GenericDialect—most database
platforms accept a common subset of SQL, but there are inconsistencies and extensions spe-
cific to each. Hibernate uses the dialect class to determine the appropriate SQL to use when
creating and querying the database. If you elect to use GenericDialect, then Hibernate will
only be able to use a common subset of SQL to perform its operations, and will be unable to
take advantage of various database-specific features to improve performance.

■Caution Hibernate looks in the classpath for the configuration file. If you place it anywhere else,
Hibernate will complain that you haven’t provided necessary configuration details.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 33

6935ch03_final.qxd 8/2/06 9:36 PM Page 33

Hibernate does not require you to use an XML configuration file. You have two other
options. First, you can provide a normal Java properties file. The equivalent properties file to
Listing 3-4 would be as follows:

hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:file:testdb;shutdown=true
hibernate.connection.username=sa
hibernate.connection.password=
hibernate.connection.pool_size=0
hibernate.show_sql=false
hibernate.dialect=org.hibernate.dialect.HSQLDialect

As you’ll notice, this does not contain the resource mapping from the XML file—and in
fact, you cannot include this information in a properties file; if you want to configure Hiber-
nate this way, you’ll need to directly map your classes into the Hibernate Configuration at
run time. Here’s how this can be done:

Configuration config = new Configuration();
config.addClass(sample.entity.Message.class);
config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

Note that the Configuration object will look in the classpath for a mapping file in the
same package as the class it has been passed. So, in this example, where the fully qualified
name of the class is sample.entity.Message, you should see the following pair of files from
the root of the classpath:

/sample/entity/Message.class
/sample/entity/Message.hbm.xml

Here, Message.class is the compiled output from the Message.java code given in Listing 3-5
(and briefly discussed in Chapter 1), and Message.hbm.xml is the XML mapping file provided in
Chapter 1 as Listing 1-5. If for some reason you want to keep your mapping files in a different
directory, you can alternatively provide them as resources like this (note that this resource path
must still be relative to the classpath):

Configuration config = new Configuration();
config.addResource("Message.hbm.xml");
config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

You may have as many or as few mapping files as you wish, given any names you like—
however, it is conventional to have one mapping file for each class that you are mapping, placed
in the same directory as the class itself, and named similarly (for example, Message.hbm.xml in
the default package to map the Message class also in the default package). This allows you to find
any given class mapping quickly, and keeps the mapping files easily readable.

If you don’t want to provide the configuration properties in a file, you can apply them
directly using the -D flag. Here’s an example:

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION34

6935ch03_final.qxd 8/2/06 9:36 PM Page 34

java -classpath ...
-Dhibernate.connection.driver_class=org.hsqldb.jdbcDriver
-Dhibernate.connection.url= jdbc:hsqldb:file:testdb;shutdown=true
-Dhibernate.connection.username=sa
-Dhibernate.connection.password=
-Dhibernate.connection.pool_size=0
-Dhibernate.show_sql=false
-Dhibernate.dialect=org.hibernate.dialect.HSQLDialect
...

Given its verbosity, this is probably the least convenient of the three methods, but it is
occasionally useful when running tools and utilities on an ad hoc basis. For most other pur-
poses, we think that the XML configuration file is the best choice.

Running the Message Example
With Hibernate and a database installed, and our configuration file created, all we need to do
now is create the classes in full, and then build and run everything. Chapter 1 omitted the triv-
ial parts of the required classes, so we provide them in full in Listings 3-5 through 3-7, after
which we’ll look at some of the details of what’s being invoked.

Listing 3-5. The Message POJO Class

package sample.entity;

public class Message {
private String message;

public Message(String message) {
this.message = message;

}

Message() {
}

public String getMessage() {
return this.message;

}

public void setMessage(String message) {
this.message = message;

}
}

Listing 3-6 shows a simple application to populate the messages table with examples.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 35

6935ch03_final.qxd 8/2/06 9:36 PM Page 35

Listing 3-6. The Code to Create a Sample Message

package sample;

import java.util.Date;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

import sample.entity.Message;

public class PopulateMessages {
public static void main(String[] args) {

SessionFactory factory =
new Configuration().configure().buildSessionFactory();

Session session = factory.openSession();
session.beginTransaction();

Message m1 = new Message(
"Hibernated a message on " + new Date());

session.save(m1);
session.getTransaction().commit();
session.close();

}
}

Finally, Listing 3-7 shows the full text of the application to list all the messages in the
database.

Listing 3-7. The Message Application

package sample;

import java.util.Iterator;
import java.util.List;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

import sample.entity.Message;

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION36

6935ch03_final.qxd 8/2/06 9:36 PM Page 36

public class ListMessages {
public static void main(String[] args)
{

SessionFactory factory =
new Configuration().configure().buildSessionFactory();

Session session = factory.openSession();

List messages = session.createQuery("from Message").list();
System.out.println("Found " + messages.size() + " message(s):");

Iterator i = messages.iterator();
while(i.hasNext()) {

Message msg = (Message)i.next();
System.out.println(msg.getMessage());

}

session.close();
}

}

The Ant target exportDDL will create an appropriate schema in the HSQLDB database files.
Running the populateMessages task will create a message entry (this can be invoked multiple
times). Running the listMessages task will list the messages that have been entered into the
database so far.

■Caution Because we have selected the drop="true" option for the hbm2ddl subtask of our
exportDDL target, running this script will effectively delete any data in the named tables. It is rarely a good
idea to run such a script from a machine that has database access to the production environment because
of the risk of accidentally deleting your production data!

The appropriate classpath entries have been set up in the Ant build script. To run a Hiber-
nate application, you need the hibernate.jar file from the root of the Hibernate distribution,
and a subset of the libraries provided in the lib subdirectory. The origin, purpose, and option-
ality of each of these libraries is explained in a README text file provided in the lib directory.

Most of the work required to get this example running is the sort of basic configuration
trivia that any application requires (writing Ant scripts, setting classpaths, and so on). The real
work consists of these steps:

1. Creating the Hibernate configuration file

2. Creating the mapping file

3. Writing the POJOs (introduced in Chapter 1)

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 37

6935ch03_final.qxd 8/2/06 9:36 PM Page 37

Persisting Multiple Objects
Our example in Chapter 1 was as simple a persistence scenario as you can imagine. In the next
few sections of this chapter, we will look at a slightly more complicated scenario.

Our example application will provide the persistence technology for an online billboard
application, as shown in Figure 3-1.

This is a gross simplification of the sort of classes that would be required in a production
application. For example, we make no distinction between the roles of users of the application,
but it should suffice to show some of the simpler relationships between classes.

Particularly interesting is the many-to-many relationship between categories and adver-
tisements. We would like to be able to have multiple categories and adverts, and place any
given advert in more than one category. For example, an electric piano should be listed in the
“Instruments” category as well as the “Electronics” category.

Creating Persistence Classes
We will begin by creating the POJOs for the application. This is not strictly necessary in a new
application, as they can be generated directly from the mapping files, but since this will be
familiar territory, it should help to provide some context for our subsequent creation of the
mapping files.

From the class diagram, we know that three classes will be persisted into the database
(see Listings 3-8, 3-9, and 3-10). Each class that will be persisted by Hibernate is required to
have a default constructor with at least package scope. They should have get and set methods
for all of the attributes that are to be persisted. We will provide each with an id field, allowing
this to be the primary key in our database (we prefer the use of surrogate keys, as changes to
business rules can make the use of direct keys risky).

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION38

Figure 3-1. The online billboard classes

6935ch03_final.qxd 8/2/06 9:36 PM Page 38

■Note A surrogate key is an arbitrary value (usually numeric), with the data type depending on the number
of objects expected (e.g., 32-bit, 64-bit, etc.). The surrogate key has no meaning outside the database—it is
not a customer number, a phone number, or anything else. As such, if a business decision causes previously
unique business data to be duplicated, this will not cause problems since the business data does not form
the primary key.

As well as the default constructor for each class, we provide a constructor that allows the
fields other than the primary key to be assigned directly. This allows us to create and populate
an object in one step instead of several, but we let Hibernate take care of the allocation of our
primary keys.

The classes shown in Figure 3-1 are our POJOs. Their implementation is shown in
Listings 3-8, 3-9, and 3-10.

Listing 3-8. The Class Representing Users

package sample.entity;

public class User {
private long id;
private String name;
private String password;

public User(String name, String password) {
this.name = name;
this.password = password;

}

User() {
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getPassword() {
return password;

}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 39

6935ch03_final.qxd 8/2/06 9:36 PM Page 39

public void setPassword(String password) {
this.password = password;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}
}

Listing 3-9. The Class Representing Categories (Each Having an Associated Set of Advert Objects)

package sample.entity;

import java.util.HashSet;
import java.util.Set;

public class Category {
private long id;
private String title;
private Set adverts = new HashSet();

public Category(String title) {
this.title = title;
this.adverts = new HashSet();

}

Category() {
}

public Set getAdverts() {
return adverts;

}

void setAdverts(Set adverts) {
this.adverts = adverts;

}

public void addAdvert(Advert advert) {
getAdverts().add(advert);

}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION40

6935ch03_final.qxd 8/2/06 9:36 PM Page 40

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}
}

Listing 3-10. The Class Representing Adverts (Each Instance Has an Associated User Who Placed
the Advert)

package sample.entity;

public class Advert {
private long id;
private String title;
private String message;
private User user;

public Advert(String title, String message, User user) {
this.title = title;
this.message = message;
this.user = user;

}

Advert() {
}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 41

6935ch03_final.qxd 8/2/06 9:36 PM Page 41

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

protected long getId() {
return id;

}

protected void setId(long id) {
this.id = id;

}
}

We have not had to add any unusual features to these classes in order to support the
Hibernate tool, though we have chosen to provide package-scoped default constructors to
support use of the (optional) lazy-loading feature of Hibernate. Most existing applications will
contain POJOs “out of the box” that are compatible with Hibernate.

Creating the Object Mappings
Now that we have our POJOs, we need to map them to the database, representing the fields
of each directly or indirectly as values in the columns of the associated tables. We take each
in turn.

The fully qualified name of the type that we are mapping is specified, and the table in
which we would like to store it is specified (we used aduser because user is a keyword in many
databases).

The class has three fields, as follows:

The id field: Corresponds to the surrogate key to be used in, and generated by, the data-
base. This special field is handled by the <id> element. The name of the field is specified
by the name attribute (so that name="id" corresponds as it must with the method name of
"getId"). It is identified as being of long type, and we would like to store its values in the
database in the long column. We specify that it should be generated by the database,
rather than by Hibernate.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION42

6935ch03_final.qxd 8/2/06 9:36 PM Page 42

The name field: Represents the name of the user. It should be stored in a column called
name. It has type String. We do not permit duplicate names to be stored in the table.

The password field: Represents a given user’s password. It should be stored in a column
called password. It has type String.

Bearing these features in mind, the mapping file in Listing 3-11 should be extremely easy
to follow.

Listing 3-11. The Mapping of the User Class into the Database

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.chapter3.User" table="aduser">

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

<property name="name" column="name" type="string" unique="true"/>

<property name="password" column="password" type="string"/>

</class>
</hibernate-mapping>

The Category mapping presents another type of relationship: many-to-many. Each
Category object is associated with a set of adverts, while any given advert can be associated
with multiple categories.

The <set> element indicates that the field in question has a java.util.Set type with the
name adverts. This sort of relationship requires the creation of an additional link table, so we
specify the name of the table containing that information.

We state that the primary key (used to retrieve items) for the objects contained in the
link table is represented by the id column, and provide the fully qualified name of the class
type contained in the table. We specify the column in the link table representing the adverts
associated with each category.

Again, this is complicated when described, but if you look at the example table from
Listing 3-14, the need for each field in the mapping becomes clear (see Listing 3-12).

Listing 3-12. The Mapping of the Category Class into the Database

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 43

6935ch03_final.qxd 8/2/06 9:36 PM Page 43

<hibernate-mapping>
<class name="sample.entity.Category" table="category">

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

<property
name="title"
column="title"
type="string"
unique="true"/>

<set name="adverts" table="link_category_advert" >
<key column="category" foreign-key="fk_advert_category"/>
<many-to-many class="sample.entity.Advert"

column="advert"
foreign-key="fk_category_advert"/>

</set>

</class>
</hibernate-mapping>

Finally, we represent the Advert class (see Listing 3-13). This class introduces the many-
to-one association, in this case with the User class. Any given advertisement must belong to a
single user, but any given user can place many different advertisements.

Listing 3-13. The Mapping of the Advert Class into the Database

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="sample.entity.Advert" table="advert">

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

<property name="message" column="message" type="string"/>
<property name="title" column="title" type="string"/>

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION44

6935ch03_final.qxd 8/2/06 9:36 PM Page 44

<many-to-one
name="user"
column="aduser"
class="sample.entity.User"
not-null="true"
foreign-key="fk_advert_user"/>

</class>
</hibernate-mapping>

Once you have created the individual mapping files, you need to tell Hibernate where to
find them. If you’re using a Hibernate configuration file, as in the Chapter 1 example, the sim-
plest thing to do is include links to the mapping files directly within this.

For our example, take the configuration file described for Chapter 1 (Listing 1-5) and add
the following three mapping resource entries:

<mapping resource="sample/entity/Advert.hbm.xml"/>
<mapping resource="sample/entity/Category.hbm.xml"/>
<mapping resource="sample/entity/User.hbm.xml"/>

after the following line:

<mapping resource="sample/entity/Message.hbm.xml"/>

This section may seem confusing, as it is something of a flying visit to the subject of map-
pings and some of their whys and wherefores. We provide a more in-depth discussion of
mapping in later chapters—specifically, general mapping concepts in Chapter 5, and XML-
based mapping files in Chapter 7. We also discuss how you can use the new Java 5 Annotations
features to represent mappings directly in your source code in Chapter 6.

Creating the Tables
With the object mapping in place and our Hibernate configuration file set up correctly, we
have everything we need to generate a script to create the database for our application by
invoking the exportDDL task. This builds the entities shown in Figure 3-2.

Even though we can generate the database directly, we also recommend taking some
time to work out what schema you would expect your mappings to generate. This allows
you to “sanity check” the script to make sure it corresponds with your expectations. If you
and the tool both agree on what things should look like, then all is well and good; if not,
your mappings may be wrong or there may be a subtle error in the way that you have
related your data types.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 45

6935ch03_final.qxd 8/2/06 9:36 PM Page 45

The script in Listing 3-14 is generated by the exportDDL task. It could easily have been
written by hand, and it is easy to compare it against your prior expectations of the database
schema (we have changed the formatting slightly, but otherwise this is identical to the output
of the task).

Listing 3-14. The Script Generated by the exportDDL Task

alter table advert
drop constraint fk_advert_user;

alter table link_category_advert
drop constraint fk_advert_category;

alter table link_category_advert
drop constraint fk_category_advert;

drop table aduser if exists;
drop table advert if exists;
drop table category if exists;
drop table link_category_advert if exists;
drop table message if exists;

create table aduser (
id bigint generated by default as identity (start with 1),
name varchar(255),
password varchar(255),
primary key (id),
unique (name));

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION46

Figure 3-2. The database entity relationships

6935ch03_final.qxd 8/2/06 9:36 PM Page 46

create table advert (
id bigint generated by default as identity (start with 1),
message varchar(255),
title varchar(255),
aduser bigint not null,
primary key (id));

create table category (
id bigint generated by default as identity (start with 1),
title varchar(255),
primary key (id),
unique (title));

create table link_category_advert (
category bigint not null,
advert bigint not null,
primary key (category, advert));

create table message (
id bigint generated by default as identity (start with 1),
message varchar(255),
primary key (id));

alter table advert
add constraint fk_advert_user
foreign key (aduser) references aduser;

alter table link_category_advert
add constraint fk_advert_category
foreign key (category) references category;

alter table link_category_advert
add constraint fk_category_advert
foreign key (advert) references advert;

Note the foreign key constraints and the link table representing the many-to-many
relationship.

Sessions
Chapter 4 will discuss the full life cycle of persistence objects in detail—but you need to
understand the basics of the relationship between the session and the persistence objects if
you are to build even a trivial application in Hibernate.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 47

6935ch03_final.qxd 8/2/06 9:36 PM Page 47

The Session and Related Objects
The session is always created from a SessionFactory. The SessionFactory is a heavyweight
object, and there would normally be a single instance per application. In some ways, it is
a little like a connection pool in a connected application. In a J2EE application, it would typi-
cally be retrieved as a JNDI resource. It is created from a Configuration object, which in turn
acquires the Hibernate configuration information and uses this to generate an appropriate
SessionFactory instance.

The session itself has a certain amount in common with a JDBC Connection object. To
read an object from the database, you must use a session directly or indirectly. An example
of a direct use of the session to do this would be, as in Chapter 1, calling the session.get()
method, or creating a Query object from the session (a Query is very much like a
PreparedStatement).

An indirect use of the session would be using an object itself associated with the session.
For example, if we have retrieved a Phone object from the database using a session directly, we
can retrieve a User object by calling Phone’s getUser() method, even if the associated User
object has not yet been loaded (as a result of lazy loading).

An object that has not been loaded via the session can be explicitly associated with the
session in several ways, the simplest of which is to call the session.update() method passing
in the object in question.

The session does a lot more than this, however, as it provides some caching functionality,
manages the lazy loading of objects, and watches for changes to associated objects (so that
the changes can be persisted to the database).

A Hibernate transaction is typically used in much the same way as a JDBC transaction.
It is used to batch together mutually dependent Hibernate operations, allowing them to be
completed or rolled back atomically, and to isolate operations from external changes to the
database. Hibernate can also take advantage of a transaction’s scope to limit unnecessary
JDBC “chatter,” queuing SQL to be transmitted in a batch at the end of the transaction when
possible.

We will discuss all of this in much greater detail in Chapter 4, but for now it suffices that
we need to maintain a single SessionFactory for the entire application. However, a session
should only be accessed within a single thread of execution. Because a session also represents
information cached from the database, it is desirable to retain it for use within the thread until
anything (specifically any Hibernate exception) causes it to become invalid.

We present in Listing 3-15 a pattern from which Data Access Objects (DAOs) can be
derived, providing an efficient way for a thread to retrieve and (if necessary) create its sessions
with a minimal impact on the clarity of the code.

Listing 3-15. The Base Class Used to Manage the Session in the Example

package sample.dao;

import java.util.logging.Level;
import java.util.logging.Logger;

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION48

6935ch03_final.qxd 8/2/06 9:36 PM Page 48

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class DAO {

protected DAO() {
}

public static Session getSession() {
Session session = (Session) DAO.session.get();
if (session == null) {

session = sessionFactory.openSession();
DAO.session.set(session);

}
return session;

}

protected void begin() {
getSession().beginTransaction();

}

protected void commit() {
getSession().getTransaction().commit();

}

protected void rollback() {
try {
getSession().getTransaction().rollback();
} catch(HibernateException e) {

log.log(Level.WARNING,"Cannot rollback",e);
}

try {
getSession().close();

} catch(HibernateException e) {
log.log(Level.WARNING,"Cannot close",e);

}
DAO.session.set(null);

}

public static void close() {
getSession().close();
DAO.session.set(null);

}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 49

6935ch03_final.qxd 8/2/06 9:36 PM Page 49

private static final Logger log = Logger.getAnonymousLogger();

private static final ThreadLocal session = new ThreadLocal();

private static final SessionFactory sessionFactory =
new Configuration().configure().buildSessionFactory();

}

Using the Session
The most common use cases for our POJOs will be to create them and delete them. In both
cases, we want the change to be reflected in the database.

For example, we want to be able to create a user, specifying the username and password,
and have this information stored in the database when we are done.

The logic to create a user (and reflect this in the database) is incredibly simple, as shown
in Listing 3-16.

Listing 3-16. Creating a User Object and Reflecting This in the Database

try {
begin();
User user = new User(username,password);
getSession().save(user);
commit();
return user;

} catch(HibernateException e) {
rollback();
throw new AdException("Could not create user " + username,e);

}

We begin a transaction, create the new User object, ask the session to save the object, and
then commit the transaction. If a problem is encountered (if, for example, a User entity with
that username has already been created in the database), then a Hibernate exception will be
thrown, and the entire transaction will be rolled back.

To retrieve the User object from the database, we will make our first excursion into HQL.
HQL is somewhat similar to SQL, but you should bear in mind that it refers to the names used
in the mapping files, rather than the table names and columns of the underlying database.

The appropriate HQL query to retrieve the users having a given name field is as follows:

from User where name= :username

where User is the class name and :username is the HQL named parameter that our code will
populate when we carry out the query. This is remarkably similar to the SQL for a prepared
statement to achieve the same end:

select * from user where name = ?

The complete code to retrieve a user for a specific username is shown in Listing 3-17.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION50

6935ch03_final.qxd 8/2/06 9:36 PM Page 50

Listing 3-17. Retrieving a User Object from the Database

try {
begin();
Query q = getSession().createQuery("from User where name = :username");
q.setString("username",username);
User user = (User)q.uniqueResult();
commit();
return user;

} catch(HibernateException e) {
rollback();
throw new AdException("Could not get user " + username,e);

}

We begin a transaction, create a Query object (similar in purpose to PreparedStatement in
connected applications), populate the parameter of the query with the appropriate username,
and then list the results of the query. We extract the user (if one has been retrieved success-
fully) and commit the transaction. If there is a problem reading the data, the transaction will
be rolled back.

The key line used to obtain the User entity is:

User user = (User)q.uniqueResult();

We use the uniqueResult()method because it is guaranteed to throw an exception if some-
how our query identifies more than one User object for the given username. In principle, this
could happen if the underlying database’s constraints don’t match our mapping constraint for
a unique username field, and an exception is an appropriate way to handle the failure.

The logic to delete a user from the database (Listing 3-18) is even more trivial than that
required to create one.

Listing 3-18. Deleting a User Object and Reflecting This in the Database

try {
begin();
getSession().delete(user);
commit();

} catch(HibernateException e) {
rollback();
throw new AdException("Could not delete user " + user.getName(),e);

}

We simply instruct the session to delete the User object from the database, and commit
the transaction. The transaction will roll back if there is a problem—for example, if the user
has already been deleted.

You have now seen all the basic operations that we want to perform on our data, so we
will now take a look at the architecture we are going to use to do this.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 51

6935ch03_final.qxd 8/2/06 9:36 PM Page 51

Building DAOs
The DAO pattern is well known to most developers. The idea is to separate out the POJOs from
the logic used to persist them into, and retrieve them from, the database. The specifics of the
implementation vary—at one extreme, they can be provided as interfaces instantiated from
a factory class, allowing a completely pluggable database layer. For our example, we have
selected a compromise of concrete DAO classes. Each DAO class represents the operations
that can be performed on a POJO type.

We have already described the base class DAO in Listing 3-15, and the preceding examples
made use of this.

To help encapsulate the specifics of the database operations that are being carried out, we
catch any HibernateException that is thrown and wrap it in a business AdException instance,
as shown in Listing 3-19.

Listing 3-19. The AdException Class for the Example

package sample;

public class AdException extends Exception {
public AdException(String message) {

super(message);
}

public AdException(String message, Throwable cause) {
super(message,cause);

}
}

The UserDAO provides all the methods required to retrieve an existing User object, delete
an existing User object, or create a new User object (see Listing 3-20). Changes to the object
in question will be persisted to the database at the end of the transaction.

Listing 3-20. The UserDAO Class for the Example

package sample.dao;

import org.hibernate.HibernateException;
import org.hibernate.Query;

import sample.AdException;
import sample.entity.User;

public class UserDAO extends DAO {
public UserDAO() {
}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION52

6935ch03_final.qxd 8/2/06 9:36 PM Page 52

public User get(String username)
throws AdException

{
try {

begin();
Query q = getSession().createQuery("from User where name = :username");
q.setString("username",username);
User user = (User)q.uniqueResult();
commit();
return user;

} catch(HibernateException e) {
rollback();
throw new AdException("Could not get user " + username,e);

}
}

public User create(String username,String password)
throws AdException

{
try {

begin();
User user = new User(username,password);
getSession().save(user);
commit();
return user;

} catch(HibernateException e) {
rollback();
throw new AdException("Could not create user " + username,e);

}
}

public void delete(User user)
throws AdException

{
try {

begin();
getSession().delete(user);
commit();

} catch(HibernateException e) {
rollback();
throw new AdException("Could not delete user " + user.getName(),e);

}
}

}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 53

6935ch03_final.qxd 8/2/06 9:36 PM Page 53

CategoryDAO provides all the methods required to retrieve all of the Category objects,
delete an existing Category object, or create a new Category object (see Listing 3-21). Changes
to the object in question will be persisted to the database at the end of the transaction.

Listing 3-21. The CategoryDAO Class for the Example

package sample.dao;

import java.util.List;

import org.hibernate.HibernateException;
import org.hibernate.Query;

import sample.AdException;
import sample.entity.Category;

public class CategoryDAO extends DAO {
public Category get(String title) throws AdException {

try {
begin();
Query q = getSession().createQuery(

"from Category where title = :title");
q.setString("title", title);
Category category = (Category) q.uniqueResult();
commit();
return category;

} catch (HibernateException e) {
rollback();
throw new AdException("Could not obtain the named category " + title, e);

}
}

public List list() throws AdException {
try {

begin();
Query q = getSession().createQuery("from Category");
List list = q.list();
commit();
return list;

} catch (HibernateException e) {
rollback();
throw new AdException("Could not list the categories", e);

}
}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION54

6935ch03_final.qxd 8/2/06 9:36 PM Page 54

public Category create(String title) throws AdException {
try {

begin();
Category cat = new Category(title);
getSession().save(cat);
commit();
return null;

} catch (HibernateException e) {
rollback();
throw new AdException("Could not create the category", e);

}
}

public void save(Category category) throws AdException {
try {

begin();
getSession().update(category);
commit();

} catch (HibernateException e) {
rollback();
throw new AdException("Could not save the category", e);

}
}

public void delete(Category category) throws AdException {
try {

begin();
getSession().delete(category);
commit();

} catch (HibernateException e) {
rollback();
throw new AdException("Could not delete the category", e);

}
}

}

AdvertDAO provides all the methods required to delete an existing Advert object or create
a new Advert object (adverts are always retrieved by selecting them from a category, and are
thus indirectly loaded by the CategoryDAO class). Changes to the object in question will be per-
sisted to the database at the end of the transaction (see Listing 3-22).

Listing 3-22. The AdvertDAO Class for the Example

package sample.dao;

import org.hibernate.HibernateException;

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 55

6935ch03_final.qxd 8/2/06 9:36 PM Page 55

import sample.AdException;
import sample.entity.Advert;
import sample.entity.User;

public class AdvertDAO extends DAO {
public Advert create(String title, String message, User user)

throws AdException {
try {

begin();
Advert advert = new Advert(title, message, user);
getSession().save(advert);
commit();
return advert;

} catch (HibernateException e) {
rollback();
throw new AdException("Could not create advert", e);

}
}

public void delete(Advert advert)
throws AdException

{
try {

begin();
getSession().delete(advert);
commit();

} catch (HibernateException e) {
rollback();
throw new AdException("Could not delete advert", e);

}
}

}

If you compare the amount of code required to create our DAO classes here with the
amount of code that would be required to implement them using the usual JDBC approach,
you will see that Hibernate’s logic is admirably compact.

The Example Client
Listing 3-23 shows the example code tying this together. Of course, this isn’t a full application,
but you now have all the DAOs necessary to manage the advertisement database. This exam-
ple gives a flavor of how they can be used.

The code should be run with the tasks in the Ant script delivered in Listing 3-1. After run-
ning the exportDDL task to create the empty database, you should run the createUsers and
createCategories tasks to provide initial users and categories, and then the postAdverts task to
place advertisements in the database. Finally, run the listAdverts task to display the saved data.

The code invoking the DAOs to perform the tasks in question is shown in Listing 3-23.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION56

6935ch03_final.qxd 8/2/06 9:36 PM Page 56

Listing 3-23. The Class to Create the Example Users

package sample;

import sample.dao.DAO;
import sample.dao.UserDAO;

public class CreateUser {
public static void main(String[] args) {

if (args.length != 2) {
System.out.println("params required: username, password");
return;

}
String username = args[0];
String password = args[1];

try {
UserDAO userDao = new UserDAO();

System.out.println("Creating user " + username);
userDao.create(username, password);
System.out.println("Created user");
DAO.close();

} catch (AdException e) {
System.out.println(e.getMessage());

}

}
}

The CreateUser class uses the UserDAO class to create and persist an appropriate User
object. The specifics of the (two) users created are drawn from the command-line parameters
provided in the createUsers Ant task.

In Listing 3-24, we create Category objects via the CategoryDAO class—and again we draw
the specific details from the command line provided by the Ant script.

Listing 3-24. The Class to Create the Example Categories

package sample;

import sample.dao.CategoryDAO;
import sample.dao.DAO;

public class CreateCategory {
public static void main(String[] args) {

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 57

6935ch03_final.qxd 8/2/06 9:36 PM Page 57

if (args.length != 1) {
System.out.println("param required: categoryTitle");
return;

}

CategoryDAO categories = new CategoryDAO();
String title = args[0];
try {

System.out.println("Creating category " + title);
categories.create(title);
System.out.println("Created category");
DAO.close();

} catch (AdException e) {
System.out.println(e.getMessage());

}

}
}

The code in Listing 3-25 allows us to create an advert for a preexisting user in a pre-
existing category. Note our use of UserDAO and CategoryDAO to obtain User and Category
objects from the database. As with the user and category, the advert details are supplied
by the Ant task.

Listing 3-25. The Class to Create the Example Adverts

package sample;

import sample.dao.AdvertDAO;
import sample.dao.CategoryDAO;
import sample.dao.DAO;
import sample.dao.UserDAO;
import sample.entity.Advert;
import sample.entity.Category;
import sample.entity.User;

public class PostAdvert {
public static void main(String[] args) {

if (args.length != 4) {
System.out.println("params required: username, categoryTitle, title, message");

return;
}

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION58

6935ch03_final.qxd 8/2/06 9:36 PM Page 58

String username = args[0];
String categoryTitle = args[1];
String title = args[2];
String message = args[3];

try {
UserDAO users = new UserDAO();
CategoryDAO categories = new CategoryDAO();
AdvertDAO adverts = new AdvertDAO();

User user = users.get(username);
Category category = categories.get(categoryTitle);
Advert advert = adverts.create(title, message, user);

category.addAdvert(advert);
categories.save(category);

DAO.close();
} catch (AdException e) {

e.printStackTrace();
}

}
}

Finally, in Listing 3-26, we make use of CategoryDAO to iterate over the categories, and
within these, the adverts drawn from the database. It is easy to see how this logic could
now be incorporated into a JSP file or servlet. It could even be used from within an EJB
session bean.

Listing 3-26. The Class to Display the Contents of the Database

package sample;

import java.util.Iterator;
import java.util.List;

import sample.dao.CategoryDAO;
import sample.dao.DAO;
import sample.entity.Advert;
import sample.entity.Category;

public class ListAdverts {
public static void main(String[] args) {

try {
List categories = new CategoryDAO().list();

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 59

6935ch03_final.qxd 8/2/06 9:36 PM Page 59

Iterator ci = categories.iterator();
while(ci.hasNext()) {

Category category = (Category)ci.next();
System.out.println("Category: " + category.getTitle());
System.out.println();
Iterator ai = category.getAdverts().iterator();
while(ai.hasNext()) {

Advert advert = (Advert)ai.next();
System.out.println();
System.out.println("Title: " + advert.getTitle());
System.out.println(advert.getMessage());
System.out.println(" posted by " + advert.getUser().getName());

}
}

DAO.close();
} catch(AdException e) {

System.out.println(e.getMessage());
}

}
}

A large part of the logic here is either output information, or concerned with accessing the
collections themselves. Java 5 devotees will see an obvious opportunity to make use of gener-
ics and enhanced for loops in this example. A quick taste of the simplified version of this code
might look like Listing 3-27.

Listing 3-27. Enhancing Your DAOs with Java 5 Features

List<Category> categories = new CategoryDAO().list();
for(Category category : categories) {

// ...
for(Advert advert : category.getAdverts()) {

// ...
}

}
DAO.close();

When you run the example applications, you will see a considerable amount of “chatter”
from the logging API, and from the Ant tool when you run these tasks, much of which can be
controlled or eliminated in a production application.

You will also notice that because you are starting each of these applications as new tasks
(several times in the case of the tasks to create data), the tasks proceed relatively slowly. This
is an artifact of the repeated creation of SessionFactory—a heavyweight object—from each
invocation of the JVM from the Ant java task, and is not a problem in “real” applications.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION60

6935ch03_final.qxd 8/2/06 9:36 PM Page 60

Summary
In this chapter, we’ve shown how to acquire the Hibernate tools, how to create and run the
example from Chapter 1, and how to create a slightly larger application from scratch, driv-
ing the database table generation from the hbm2ddl Ant task. All of the files described in this
chapter and the others can be downloaded from the Apress web site (www.apress.com).

In the next chapter, we will look at the architecture of Hibernate and the lifecycle of a
Hibernate-based application.

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION 61

6935ch03_final.qxd 8/2/06 9:36 PM Page 61

6935ch03_final.qxd 8/2/06 9:36 PM Page 62

The Persistence Life Cycle

In this chapter, we discuss the life cycle of persistent objects in Hibernate. These persistent
objects are POJOs without any special marker interfaces or inheritance related to Hibernate.
Part of Hibernate’s popularity comes from its ability to work with a normal object model.

We also discuss the methods of the Session interface that are used for creating, retrieving,
updating, and deleting persistent objects from Hibernate.

Introduction to the Life Cycle
After adding Hibernate to your application, you do not need to change your existing Java
object model to add persistence marker interfaces or any other type of hint for Hibernate.
Instead, Hibernate works with normal Java objects that your application creates with the new
operator, or that other objects create. For Hibernate’s purposes, these can be drawn up into
two categories: objects for which Hibernate has entity mappings, and objects that are not
directly recognized by Hibernate. A correctly mapped entity object will consist of fields and
properties that are mapped, and that are themselves either references to correctly mapped
entities, references to collections of such entities, or “value” types (primitives, primitive wrap-
pers, strings, or arrays of these).

Given an instance of an object that is mapped to Hibernate, it can be in any one of three
different states: transient, persistent, or detached.

Transient objects exist in memory, as illustrated in Figure 4-1. Hibernate does not manage
transient objects or persist changes to transient objects.

To persist the changes to a transient object, you would have to ask the session to save the
transient object to the database, at which point Hibernate assigns the object an identifier.

63

C H A P T E R 4

■ ■ ■

Figure 4-1. Transient objects are independent of Hibernate.

6935ch04_final.qxd 8/2/06 9:35 PM Page 63

Persistent objects exist in the database, and Hibernate manages the persistence for per-
sistent objects. We show this relationship between the objects and the database in Figure 4-2.
If fields or properties change on a persistent object, Hibernate will keep the database repre-
sentation up-to-date.

Detached objects have a representation in the database, but changes to the object will not
be reflected in the database, and vice versa. This temporary separation of the object and the
database is shown in Figure 4-3. A detached object can be created by closing the session that
it was associated with, or by evicting it from the session with a call to the session’s evict()
method.

In order to persist changes made to a detached object, the application must reattach it to a
valid Hibernate session. A detached instance can be associated with a new Hibernate session
when your application calls one of the load(), refresh(), merge(), update(), or save() methods
on the new session with a reference to the detached object. After the call, the detached object
would be a persistent object managed by the new Hibernate session.

Versions prior to Hibernate 3 had support for the Lifecycle and Validatable interfaces.
These allowed your objects to listen for save, update, delete, load, and validate events using
methods on the object. In Hibernate 3, this functionality moved into events and interceptors,
and the old interfaces were removed.

Entities, Classes, and Names
Entities represent Java objects with mappings that permit them to be stored in the database.
The mappings indicate how the fields and properties of the object should be stored in the
database tables. However, it is possible that you will want objects of a particular type to be
represented in two different ways in the database. In this case, how does Hibernate choose
which to use?

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE64

Figure 4-2. Persistent objects are maintained by Hibernate.

Figure 4-3. Detached objects exist in the database but are not maintained by Hibernate.

6935ch04_final.qxd 8/2/06 9:35 PM Page 64

An object representing an entity will have a normal Java class type. It will also have an
entity name. By default, the name of the entity will be the same as the name of the class type.
You have the option, however, to change this via the mappings, and thus distinguish between
objects of the same type that are mapped to different tables. There are therefore methods in
the Session API that require an entity name to be provided to determine the appropriate map-
ping. If this is omitted, it will either be because no such distinction is needed, or because, for
convenience, the method assumes the most common case—in which the entity name is the
same as the class name—and duplicates the functionality of another more specific method
that permits the entity name to specified explicitly.

Identifiers
Hibernate requires all entities to have an identifier, which represents the primary key col-
umn(s) of the table to which it will be persisted. When an entity is persisted, a suitable
identifier can be assigned to it automatically by Hibernate, or a suitable identifier may be
explicitly assigned by the user (see Listing 4-1).

Listing 4-1. A Typical Identifier Field

public int id;

Usually, the entity will provide a suitable identifier field or property, and Hibernate will
use this value to correlate entities in memory with those persisted to the tables of the data-
base. However, if no such field or property is available (as will likely be the case with legacy
code), then Hibernate itself can manage the identifier value internally. The type of the identi-
fier must be defined in the mapping information.

Entities and Associations
Entities can contain references to other entities—either directly as a property or field, or indi-
rectly via a collection of some sort (arrays, sets, lists, etc.). These associations are represented
using foreign key relationships in the underlying tables.

When only one of the pair of entities contains a reference to the other, the association is
unidirectional. If the association is mutual, then it is referred to as bidirectional.

■Tip A common mistake when designing entity models using Hibernate is to try to make all associations
bidirectional. Associations that are not a natural part of the object model should not be forced into it. HQL
often presents a more natural way to access the same information.

If both ends of the association managed the foreign keys, then we would encounter a prob-
lem when client code called the appropriate set method on both ends of the association. Should
two foreign key columns be maintained—one in each direction (risking circular dependencies)—
or only one? (And if only one, should altering either side affect it, or only one?)

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 65

6935ch04_final.qxd 8/2/06 9:35 PM Page 65

Ideally, we would like to dictate that only changes to one end of the relationship will result
in any updates to the foreign key; and indeed, Hibernate allows us to do this by marking one
end of the association as being managed by the other (in the XML mapping files, this is known
as the “inverse” of the parent, whereas in the EJB 3 terminology used by the annotation map-
pings, it is marked as being “mappedBy” the parent).

■Caution inverse and mappedBy are purely about how the foreign key relationships between entities
are saved. They have nothing to do with saving the entities themselves. Despite this, they are often confused
with the entirely orthogonal cascade functionality (described in the “Cascading Operations” section of this
chapter).

While Hibernate lets us specify that changes to one association will result in changes to the
database, it does not allow us to cause changes to one end of the association to be automati-
cally reflected in the other end in the Java POJOs. For example, in a one-to-one bidirectional
association between an Email class and a Message class, the code in Listing 4-2 is incomplete
even if the Message entity is the inverse of the Email entity:

Listing 4-2. A Common Misconception About Bidirectional Associations

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);
// Incorrectly managed
session.save(email);
session.save(message);
System.out.println(message.getEmail());

The final call to message.getEmail() will return null (assuming simple getters and setters
are used). To get the desired effect, both entities must be updated—If the Email entity owns the
association, this merely ensures the proper assignment of a foreign key column value. There is
no implicit call of message.setEmail(email). This must be explicitly given as in Listing 4-3.

Listing 4-3. The Correct Maintenance of a Bidirectional Association

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);
message.setEmail(email); // Correctly managed
session.save(email);
session.save(message);
System.out.println(message.getEmail());

It is common for users new to Hibernate to get confused about this point—the confusion
arises from two origins, which are described in the following paragraphs.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE66

6935ch04_final.qxd 8/2/06 9:35 PM Page 66

EJB container-managed persistence (CMP) does work in this way—when a reference is
assigned in one entity, the corresponding reference in the other entity will be updated to
reflect this. Hibernate does not take this approach because it was designed to work in other
environments and with POJOs from other bodies of code, where such behavior would be
unexpected. If you pass a pair of objects to some third-party API, mysterious side effects
should not occur. Since Hibernate is precisely that—a third-party API—from the perspective
of most client code, Hibernate cannot safely cause their references to become connected in
this way!

Though Hibernate does not produce this behavior automatically, there is a side effect of
persistence to the database that can make it appear that it does (see Listing 4-4).

Listing 4-4. Misleading Behavior

openSession();
beginTransaction();

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);

save(email,message);

System.out.println("Stored...");
System.out.println(email);
System.out.println(email.getMessage());
System.out.println(message);
System.out.println(message.getEmail());

Serializable emailPrimaryKey = session.getIdentifier(email);
Serializable messagePrimaryKey = session.getIdentifier(message);
endTransaction();

closeSession();

System.out.println();

openSession();

beginTransaction();

email = (Email)session.get(Email.class,emailPrimaryKey);
message = (Message)session.get(Message.class,messagePrimaryKey);

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 67

6935ch04_final.qxd 8/2/06 9:35 PM Page 67

System.out.println("Retrieved...");
System.out.println(email);
System.out.println(email.getMessage());
System.out.println(message);
System.out.println(message.getEmail());
endTransaction();
closeSession();

If you run the code from Listing 4-4, you will see the following output:

Stored...
Test Email
Test Message
Test Message
null

Retrieved...
Test Email
Test Message
Test Message
Test Emails

When the entities are initially stored, the Message object’s reference to its associated Email
is null, even after Hibernate has stored the data. The entity in memory is not updated to reflect
the change to the Email entity. However, after we have closed the session, opened a new one,
and loaded the entities from the database, the entity has been updated.

Because the session has been closed, the session is forced to reload the entities from the
database when we request them by primary key. Because the Email entity is the owner of the
association, the association exists in the database purely in the form of a foreign key relation-
ship from the Email table onto the Message table’s primary key. When we altered the Email entity
and saved it, this foreign key relationship was therefore updated. So, when we reload the enti-
ties, the Message entity’s association details are (correctly) obtained from the same foreign key.

If we alter this code to make the association in the Message entity instead of the Email
entity, but leave the Email entity the owner of the association, we will see the reverse effect, as
follows:

Email email = new Email("Test Email");
Message message = new Message("Test Message");
//email.setMessage(message);
message.setEmail(email);

Because we have not made the association in the Email entity (the owner), the foreign key
of the Email table is not pointed at the Message table. When we reload the entities, we do not
see the “automatic” association behavior—quite the opposite:

Stored...
Test Email
null
Test Message
Test Email

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE68

6935ch04_final.qxd 8/2/06 9:35 PM Page 68

Retrieved...
Test Email
null
Test Message
null

As you can see, although the two entities have been saved, the attempt to associate the
Email with the Message entity by calling a method on the Message entity has not been honored
in the database, because the Message entity does not own the association. The following list
recaps the points made so far:

• You must explicitly manage both ends of an association.

• Only changes to the owner of an association will be honored in the database.

• When you load a detached entity from the database, it will reflect the foreign key rela-
tionships persisted into the database.

Table 4-1 shows how you can select the side of the relationship that should be made the
owner of a bidirectional association. Remember that to make an association the owner, you
must mark the other end as inverse="true" (the choice of terminology is poor, but
entrenched).

Table 4-1. Marking the Owner of an Association

Type of Association Options

One-to-one Either end can be made the owner, but one (and only one) of them should
be—if you don’t specify this, you will end up with a circular dependency.

One-to-many The many end must be made the owner of the association.

Many-to-one This is the same as the one-to-many relationship, viewed from the opposite
perspective, so the same rule applies—the many end must be made the
owner of the association.

Many-to-many Either end of the association can be made the owner.

If this all seems rather confusing, just remember that association ownership is concerned
exclusively with the management of the foreign keys in the database, and things should
become clearer as you use Hibernate further. Associations and mappings are discussed in
detail in the next three chapters.

Saving Entities
Creating an instance of a class you mapped with a Hibernate mapping does not automatically
persist the object to the database. Until you explicitly save the object with a valid Hibernate ses-
sion, the object is transient, like any other Java object. In Hibernate, we use one of the save()
methods on the Session interface to store a transient object in the database, as follows:

public Serializable save(Object object) throws HibernateException
public void save(Object object, Serializable id) throws HibernateException
public Serializable save(String entityName,Object object) throws HibernateException

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 69

6935ch04_final.qxd 8/2/06 9:35 PM Page 69

All of the save() methods take a transient object reference (which must not be null) as an
argument. Hibernate expects to find a mapping for the transient object’s class—Hibernate
cannot persist arbitrary unmapped objects.

When persisting an object, it is possible for the user to override the identifier value gener-
ated by Hibernate by setting the id field property or calling an alternative save() method that
also takes an object id as an argument. Obviously, this is most useful when the entity does not
have its own id field or property, but it can be used even if it does. The id must not be null,
and must be a Serializable value. If your entity uses a primitive to represent the id field, you
can use the appropriate wrapper object. For example, int identifier values can be wrapped in
java.lang.Integer objects.

The save() methods all create a new org.hibernate.event.SaveOrUpdateEvent event. We
discuss events in more detail in Appendix A, although you do not have to worry about these
implementation details to use Hibernate effectively.

At its simplest, we create a new object in Java, set a few of its properties, and then save it
through the session, as follows:

Supplier superCorp = new Supplier();
superCorp.setName("SuperCorp");
session.save(superCorp);

It is not appropriate to save an object that has already been persisted. Equally, it is not
appropriate to update a transient object. If it is impossible or inconvenient to determine the
state of the object from your application code, you may use the saveOrUpdate() method.
Hibernate uses the identifier of the object to determine whether to insert a new row into
the database or update an existing row. The method signature is as follows:

public void saveOrUpdate(Object object) throws HibernateException

Once an object is in a persistent state, Hibernate manages updates to the database itself
as you change the fields and properties of the object.

In order to support the behavior required by the new EJB 3 EntityManager, a persist()
method has been added to the API. This behaves the same as the save() methods, except it is
not guaranteed that the entities will immediately be assigned a primary key value. We discuss
EJB 3 and the EntityManager in Appendix A.

Object Equality and Identity
When we discuss persistent objects in Hibernate, we also need to consider the role that object
equality and identity plays with Hibernate. When we have a persistent object in Hibernate,
that object represents both an instance of a class in a particular Java virtual machine (JVM)
and a row (or rows) in a database table (or tables).

Requesting a persistent object again from the same Hibernate session returns the same
Java instance of a class, which means that you can compare the objects using the standard Java
== equality syntax. If, however, you request a persistent object from more than one Hibernate
session, Hibernate will provide distinct instances from each session, and the == operator will
return false if you compare these object instances.

Taking this into account, if you are comparing objects in two different sessions, you will
need to implement the equals() method on your Java persistence objects.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE70

6935ch04_final.qxd 8/2/06 9:35 PM Page 70

Loading Entities
Hibernate’s Session interface provides several load() methods for loading entities from your
database. Each load() method requires the object’s primary key as an identifier.

In addition to the id, Hibernate also needs to know which class or entity name to use to
find the object with that id. Last, you will need to cast the object returned by load() to the class
you desire. The basic load() methods are as follows:

public Object load(Class theClass, Serializable id) throws HibernateException
public Object load(String entityName, Serializable id) throws HibernateException
public void load(Object object, Serializable id) throws HibernateException

The last load() method takes an object as an argument. The object should be of the same
class as the object you would like loaded, and it should be empty. Hibernate will populate that
object with the object you requested. We find this syntax to be somewhat confusing when put
into applications, so we do not tend to use it ourselves.

The other load() methods take a lock mode as an argument. The lock mode specifies
whether Hibernate should look into the cache for the object, and which database lock level
Hibernate should use for the row (or rows) of data that represent this object. The Hibernate
developers claim that Hibernate will usually pick the correct lock mode for you, although we
have seen situations in which it is important to manually choose the correct lock. In addition,
your database may choose its own locking strategy—for instance, locking down an entire table
rather than multiple rows within a table. In order of least restrictive to most restrictive, the
various lock modes you can use are as follows:

• NONE: Uses no row-level locking, and uses a cached object if available; this is the
Hibernate default.

• READ: Prevents other SELECT queries from reading data that is in the middle of a trans-
action (and thus possibly invalid) until it is committed.

• UPGRADE: Uses the SELECT FOR UPDATE SQL syntax to lock the data until the transaction
is finished.

• UPGRADE_NOWAIT: Uses the NOWAIT keyword (for Oracle), which returns an error immedi-
ately if there is another thread using that row. Otherwise this is similar to UPGRADE.

All of these lock modes are static fields on the org.hibernate.LockMode class. We discuss
locking and deadlocks with respect to transactions in more detail in Chapter 8. The load()
methods that use lock modes are as follows:

public Object load(Class theClass, Serializable id, LockMode lockMode)
throws HibernateException

public Object load(String entityName, Serializable id, LockMode lockMode)
throws HibernateException

You should not use a load() method unless you are sure that the object exists. If you are
not certain, then use one of the get() methods. The load() methods will throw an exception if
the unique id is not found in the database, whereas the get() methods will merely return a
null reference.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 71

6935ch04_final.qxd 8/2/06 9:35 PM Page 71

Much like load(), the get() methods take an identifier and either an entity name or a
class. There are also two get() methods that take a lock mode as an argument. The get()
methods are as follows:

public Object get(Class clazz, Serializable id)
throws HibernateException

public Object get(String entityName, Serializable id)
throws HibernateException

public Object get(Class clazz, Serializable id, LockMode lockMode)
throws HibernateException

public Object get(String entityName, Serializable id, LockMode lockMode)
throws HibernateException

If you need to determine the entity name for a given object (by default, this is the same as
the class name), you can call the getEntityName() method on the Session interface, as follows:

public String getEntityName(Object object) throws HibernateException

Using the get()and load() methods is straightforward. For the following code sample,
we would be getting the Supplier id from another Java class. For instance, through a web
application, someone may select a Supplier details page for the supplier with the id 1. If we
are not sure that the supplier exists, we use the get() method, with which we could check
for null, as follows:

// get an id from some other Java class, for instance, through a web application
Supplier supplier = (Supplier) session.get(Supplier.class,id);
if (supplier == null) {

System.out.println("Supplier not found for id " + id);
return;

}

We can also retrieve the entity name from Hibernate and use it with either the get() or
load() method. The load() method will throw an exception if an object with that id cannot be
found.

String entityName = session.getEntityName(supplier);
Supplier secondarySupplier = (Supplier) session.load(entityName,id);

Refreshing Entities
Hibernate provides a mechanism to refresh persistent objects from their database representa-
tion. Use one of the refresh() methods on the Session interface to refresh an instance of a
persistent object, as follows:

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE72

6935ch04_final.qxd 8/2/06 9:35 PM Page 72

public void refresh(Object object)
throws HibernateException

public void refresh(Object object, LockMode lockMode)
throws HibernateException

Updating Entities
Hibernate automatically persists into the database changes made to persistent objects.
If a property changes on a persistent object, the associated Hibernate session will queue the
change for persistence to the database using SQL. From a developer’s perspective, you do not
have to do any work to store these changes, unless you would like to force Hibernate to com-
mit all of its changes in the queue. You can also determine whether the session is dirty and
changes need to be committed. When you commit a Hibernate transaction, Hibernate will
take care of these details for you.

The flush() method forces Hibernate to flush the session, as follows:

public void flush() throws HibernateException

You can determine if the session is dirty with the isDirty() method, as follows:

public boolean isDirty() throws HibernateException

You can also instruct Hibernate to use a flushing mode for the session with the
setFlushMode() method. The getFlushMode() method returns the flush mode for the current
session, as follows:

public void setFlushMode(FlushMode flushMode)
public FlushMode getFlushMode()

The possible flush modes are the following:

• ALWAYS: Every query flushes the session before the query is executed.

• AUTO: Hibernate manages the query flushing to guarantee that the data returned by a
query is up-to-date.

• COMMIT: Hibernate flushes the session on transaction commits.

• NEVER: Your application needs to manage the session flushing with the flush() method.
Hibernate never flushes the session itself.

By default, Hibernate uses the AUTO flush mode. Generally, you should use transaction
boundaries to ensure that appropriate flushing is taking place, rather than trying to “manu-
ally” flush at the appropriate times.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 73

6935ch04_final.qxd 8/2/06 9:35 PM Page 73

Deleting Entities
In order to allow convenient removal of entities from the database, the Session interface pro-
vides a delete() method, as follows:

public void delete(Object object) throws HibernateException

This method takes a persistent object as an argument. The argument can also be a tran-
sient object with the identifier set to the id of the object that needs to be erased.

In the simplest form, in which you are simply deleting an object with no associations to
other objects, this is straightforward; but many objects do have associations with other objects.
To allow for this, Hibernate can be configured to allow deletes to cascade from one object to its
associated objects.

For instance, consider the situation in which you have a parent with a collection of child
objects, and you would like to delete them all. The easiest way to handle this is to use the
cascade attribute on the collection’s element in the Hibernate mapping. If you set the cascade
attribute to delete or all, the delete will be cascaded to all of the associated objects. Hiber-
nate will take care of deleting these for you—deleting the parent erases the associated objects.

Hibernate 3 also supports bulk deletes (see Listing 4-5), where your application executes
a DELETE HQL statement against the database. These are very useful for deleting more than
one object at a time because each object does not need to be loaded into memory just to be
deleted.

Listing 4-5. A Bulk Delete Using a Hibernate Query

session.createQuery("delete from User").executeUpdate();

Network traffic is greatly reduced, as are the memory requirements compared to those for
individually issuing a delete() call against each entity identifier.

■Caution Bulk deletes do not cause cascade operations to be carried out. If cascade behavior is needed,
you will need to carry out the appropriate deletions yourself, or use the session’s delete() method.

Cascading Operations
When you perform one of the operations described in this chapter on an entity, the opera-
tions will not be performed on the associated entities unless you explicitly tell Hibernate to
perform them.

For example, the following code will fail when we try to commit the transaction because
the message entity that is associated with the Email entity has not been persisted into the
database—and so the Email entity cannot be accurately represented (with its foreign key onto
the appropriate message row) in its table.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE74

6935ch04_final.qxd 8/2/06 9:35 PM Page 74

Session session = factory.openSession();
session.beginTransaction();

Email email = new Email("Email title");
Message message = new Message("Message content");
email.setMessage(message);
message.setEmail(email);

session.save(email);

session.getTransaction().commit();
session.close();

session = factory.openSession();
session.beginTransaction();

Ideally, we would like the save operation to be propagated from the Email entity to its
associated Message object. We do this by setting the cascade operations for the properties and
fields of the entity (or assigning an appropriate default value for the entity as a whole). So, the
preceding code will perform correctly if at least the save cascade operation is set for the Email
entity’s message property. All of the basic life cycle operations discussed in this chapter have
associated cascade values, as follows:

• create

• merge

• delete

• save-update

• evict

• replicate

• lock

• refresh

These values can be concatenated in a comma-separated list to allow cascading for any
combination of these operations. When all operations should be cascaded, Hibernate provides
a shortcut value named all that tells Hibernate to cascade all of these operations from the
parent to each child object (for that relationship).

As part of the Hibernate mapping process, you can tell Hibernate to use one of these
cascading types for a relationship between two objects (the parent and the child). On the
collection or property element in the mapping file, set the cascade attribute to the type (or
types) you would like to use.

By default, Hibernate does not cascade any operations—the default behavior can be over-
ridden at the entity level via the XML mapping files using the default-cascade attribute on the
<hibernate-mapping> XML element or in the annotated source files.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 75

6935ch04_final.qxd 8/2/06 9:35 PM Page 75

The last possible cascading type is delete-orphan. Use delete-orphan to remove a child
object from the database when you remove the child from the parent’s collection. This cascad-
ing type only works on one-to-many associations. The all cascading type does not include
delete-orphan—you will have to use "all,delete-orphan", as in the following excerpt from
a Hibernate mapping file:

<bag name="products" inverse="true" cascade="all,delete-orphan">
<key column="supplierId"/>
<one-to-many class="Product"/>

</bag>

Simply remove a child object from a parent object’s collection after you have added the
delete-orphan cascading type. Hibernate will remove the child object from the database itself,
without any additional calls. The following example removes a child object from the collection:

supplier.getProducts().remove(product);

Lazy Loading, Proxies, and Collection Wrappers
Consider the stereotypical Internet web application: the online store. The store maintains
a catalog of products. At the crudest level, this can be modeled as a catalog entity managing a
series of product entities. In a large store, there may be tens of thousands of products grouped
into various overlapping categories.

When a customer visits the store, the catalog must be loaded from the database. We prob-
ably don’t want the implementation to load every single one of the entities representing the
tens of thousands of products to be loaded into memory. For a sufficiently large retailer, this
might not even be possible given the amount of physical memory available on the machine.
Even if this were possible, it would probably cripple the performance of the site.

Instead, we want only the catalog to load, possibly with the categories as well. Only when
the user drills down into the categories should a subset of the products in that category be
loaded from the database.

To manage this problem, Hibernate provides a facility called lazy loading. When enabled
(this is the default using XML mappings, but not when using annotations), an entity’s associ-
ated entities will only be loaded when they are directly requested. For example, the following
code loads only a single entity from the database:

Email email = (Email)session.get(Email.class,new Integer(42));

whereas if an association of the class is accessed, and lazy loading is in effect, the associations
are pulled from the database as needed. For instance, in the following snippet, the associated
Message object will be loaded since it is explicitly referenced.

Email email = (Email)session.get(Email.class,new Integer(42));
String text = email.getMessage().getContent();

The simplest way that Hibernate can force this behavior upon our entities is by providing
a proxy implementation of them. Hibernate intercepts calls to the entity by substituting for it a
proxy derived from the entity’s class. Where the requested information is missing, it will be

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE76

6935ch04_final.qxd 8/2/06 9:35 PM Page 76

loaded from the database before control is ceded to the parent entity’s implementation.
Where the association is represented as a collection class, a wrapper (essentially a proxy for
the collection, rather than for the entities that it contains) is created and substituted for the
original collection.

Hibernate can only access the database via a session. If an entity is detached from the ses-
sion when we try to access an association (via a proxy or collection wrapper) that has not yet
been loaded, Hibernate throws an exception: the infamous LazyInitializationException. The
cure is to either ensure that the entity is made persistent again, or ensure that all of the fields
that will be required are accessed before the entity is detached from the session.

If you need to determine whether a proxy, a persistence collection, or an attribute has
been lazy loaded or not, you can call the isInitialized() and isPropertyInitialized()
methods on the org.hibernate.Hibernate class. You can also force a proxy or collection to
become fully populated by calling the initialize() method on this class.

Querying Objects
Hibernate provides several different ways to query for objects stored in the database. The
Criteria Query API is a Java API for constructing a query as an object. HQL is an object-ori-
ented query language, similar to SQL, that you may use to retrieve objects that match the
query. Hibernate provides a way to execute SQL directly against the database to retrieve
objects—if you have legacy applications that use SQL or if you need to use SQL features that
are not supported through HQL and the Criteria Query API (discussed in Chapter 11).

Summary
Hibernate provides a simple API for creating, retrieving, updating, and deleting objects from
a relational database through the Session interface. Understanding the difference between
transient, persistent, and detached objects in Hibernate will allow you to understand how
changes to the objects update database tables.

We have touched upon the need to create mappings to correlate the database tables with
the fields and properties of the Java objects that you want to persist. The next chapter covers
these in detail, and discusses why they are required and what they can contain.

CHAPTER 4 ■ THE PERSISTENCE L IFE CYCLE 77

6935ch04_final.qxd 8/2/06 9:35 PM Page 77

6935ch04_final.qxd 8/2/06 9:35 PM Page 78

An Overview of Mapping

The purpose of Hibernate is to allow you to treat your database as if it stores Java objects.
However, databases in practice do not store objects—they store data in tables and columns.
Unfortunately, there is no simple way to correlate the data stored in a database with the data
represented by Java objects.

The difference between an object-oriented association and a relational one is fundamen-
tal. Consider a simple class to represent a user, and another to represent an e-mail address, as
shown in Figure 5-1.

User objects contain fields referring to Email objects. The association has a direction—
given a User object, you can determine its associated Email object. For example, consider
Listing 5-1.

Listing 5-1. Acquiring the Email Object from the User Object

User user = ...
Email email = user.email;

The reverse, however, is not true. The natural way to represent this relationship in the
database, as illustrated in Figure 5-2, is superficially similar.

79

C H A P T E R 5

■ ■ ■

Figure 5-1. An object-oriented association

Figure 5-2. A relational association

6935ch05_final.qxd 8/2/06 9:49 PM Page 79

Despite that similarity, the direction of the association is effectively reversed. Given an
Email row, you can immediately determine which User row it belongs to in the database; this
relationship is mandated by a foreign key constraint. It is possible to reverse the relationship
in the database world through suitable use of SQL—another difference.

Given the differences between the two worlds, it is necessary to manually intervene to
determine how your Java classes should be represented in database tables.

Why Mapping Cannot Be Automated
It is not immediately obvious why you cannot create simple rules for storing your Java objects
in the database so that they can be easily retrieved. For example, the most immediately obvi-
ous rule would be that a Java class must correlate to a single table. For example, instances of
the User class defined in Listing 5-2 could surely be represented by a simple table like the one
for a user shown in Figure 5-1.

Listing 5-2. A Simple User Class with a Password Field

public class User {
String name;
String password;

}

And indeed it could, but some questions present themselves:

• How many rows should you end up with if you save a user twice?

• Are you allowed to save a user without a name?

• Are you allowed to save a user without a password?

When you start to think about classes that refer to other classes, there are additional ques-
tions to consider. Have a look at the Customer and Email classes defined in Listing 5-3.

Listing 5-3. Customer and Email Classes

public class Customer {
int customerId;
int customerReference;
String name;
Email email;

}

public class Email {
String address;

}

CHAPTER 5 ■ AN OVERVIEW OF MAPPING80

6935ch05_final.qxd 8/2/06 9:49 PM Page 80

Based on this, the following questions arise:

• Is a unique customer identified by their customer ID, or their customer reference?

• Can an e-mail address be used by more than one customer?

• Should the relationship be represented in the Customer table?

• Should the relationship be represented in the Email table?

• Should the relationship be represented in some third (link) table?

Depending upon the answers to these questions, your database tables could vary consid-
erably. You could take a stab at a reasonable design, such as that given in Figure 5-3, based
upon your intuition about likely scenarios in the real world.

As soon as you take away the context provided by the variable and class names, it
becomes much harder to form any useful decision about these classes (see Listing 5-4).
It would be an impossible task to design an automated tool that could make this sort of
decision.

Listing 5-4. A Class Identical in Structure to Listing 5-3, but with All Contextual Information
Removed

public class Foo {
int x;
int y;
String s;
Bar bar;

}

public class Bar {
String a;

}

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 81

Figure 5-3. Tables in which the customer is identified by customerId. Here, e-mail address entities
can only be used by a single customer, and the relationship is maintained by the Email table.

6935ch05_final.qxd 8/2/06 9:49 PM Page 81

Primary Keys
Most “relational” databases that provide SQL access are prepared to accept tables that have
no predefined primary key. Hibernate is not so tolerant—even if your table has been created
without a primary key, Hibernate will require you to specify one. This often seems perverse to
users who are familiar with SQL and databases, but who are not familiar with ORM tools. As
such, we will examine in more depth the problems that arise without a primary key.

Without a primary key, it is impossible to uniquely identify a row in a table. For example,
consider Table 5-1.

Table 5-1. A Table in Which the Rows Cannot Be Uniquely Identified

User Age

dminter 35

dminter 40

dminter 55

dminter 40

jlinwood 57

This table clearly contains information about users and their respective ages. However,
there are four users with the same name (Dave Minter, Denise Minter, Daniel Minter, and
Dashiel Minter). There is probably a way of distinguishing them somewhere else in the sys-
tem—perhaps by an e-mail address or a user number. But if, for example, you want to know
the ages of Dashiel Minter with user ID 32, there is no way to obtain it from Table 5-1.

While Hibernate will not let you omit the primary key, it will permit you to form the primary
key from a collection of columns. For example, Table 5-2 could be keyed by Usernumber and User.

Table 5-2. A Table in Which the Rows Can Be Uniquely Identified

User Usernumber Age

dminter 1 35

dminter 2 40

dminter 3 55

dminter 32 42

jlinwood 1 57

Neither User nor Usernumber contains unique entries, but in combination they uniquely
identify the age of a particular user, and so they are acceptable to Hibernate as a primary key.

Why does Hibernate need to uniquely identify entries when SQL doesn’t? Hibernate is
representing Java objects, which are always uniquely identifiable. This is why the classic mis-
take made by new Java developers is to compare strings using the == operator instead of the
equals() method. You can distinguish between references to two String objects that represent
the same text and two references to the same String object. SQL has no such obligation, and
there are arguably cases in which it is desirable to give up the ability to make the distinction.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING82

6935ch05_final.qxd 8/2/06 9:49 PM Page 82

If Hibernate could not uniquely identify an object with a primary key, then the following
code could have several possible outcomes in the underlying table.

String customer = getCustomerFromHibernate("dcminter");
customer.setAge(10);
saveCustomerToHibernate(customer);

For example, let’s say the table originally contained the data shown in Table 5-3.

Table 5-3. Updating an Ambiguous Table

User Age

dcminter 30

dcminter 42

Which of the following should be contained in the resulting table?

• A single row for the user dcminter, with the age set to 10

• Two rows for the user, with both ages set to 10

• Two rows for the user, with one age set to 10 and the other to 42

• Two rows for the user, with one age set to 10 and the other to 30

• Three rows for the user, with one age set to 10 and the others to 30 and 42

In short, the Hibernate developers made a decision to enforce the use of primary keys
when creating mappings so that this problem does not arise. Hibernate does provide facilities
that will allow you to work around this if it is absolutely necessary (you can create views or
stored procedures to “fake” the appropriate key, or you can use conventional JDBC to access
the table data), but when using Hibernate, it is always more desirable to work with tables that
have correctly specified primary keys if at all possible.

Lazy Loading
When you load classes into memory from the database, you don’t necessarily want all the
information to actually be loaded. To take an extreme example, loading a list of e-mails should
not cause the full body text and attachments of every e-mail to be loaded into memory. First,
they might demand more memory than is actually available. Second, even if they fit, it could
take a long time for all of this information to be obtained.

If you were to tackle this problem in SQL, you would probably select a subset of the appro-
priate fields for the query to obtain the list; for example:

SELECT from, to, date, subject FROM email WHERE username = 'dcminter';

Hibernate will allow you to fashion queries that are rather similar to this, but it also offers
a more flexible approach, known as lazy loading. Certain relationships can be marked as being
“lazy,” and they will not be loaded from disk until they are actually required.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 83

6935ch05_final.qxd 8/2/06 9:49 PM Page 83

The default in Hibernate 3 is that classes (including collections like Set and Map) should
be lazily loaded. For example, when an instance of the User class given in the next listing is
loaded from the database, the only fields initialized will be userId and username.

public class User {
int userId;
String username;
EmailAddress emailAddress;
Set roles;

}

However, as long as the object is still associated with Hibernate in the appropriate way
(see Chapter 9), the appropriate objects for emailAddress and roles will be loaded from the
database if they are accessed.

This is the default behavior only; the mapping file can be used to specify which classes
and fields should behave in this way.

Associations
When we looked at why the mapping process could not be automated, we discussed the fol-
lowing example classes:

public class Customer {
int customerId;
int customerReference;
String name;
Email email;

}

public class Email {
String address;

}

We also gave the following five questions that it raised:

• Is a unique customer identified by their customer ID, or their customer reference?

• Can a given e-mail address be used by more than one customer?

• Should the relationship be represented in the Customer table?

• Should the relationship be represented in the Email table?

• Should the relationship be represented in some third (link) table?

The first question can be answered simply—it depends on what column you specify as
the primary key. The remaining four questions are related, and their answers depend upon the
object relationships. Furthermore, if your Customer class represents the relationship with the
EmailAddress using a Collection class or an array, it would be possible for a user to have mul-
tiple e-mail addresses.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING84

6935ch05_final.qxd 8/2/06 9:49 PM Page 84

public class Customer {
int customerId;
int customerReference;
String name;
Set email;

}

So, you should add another question: can a customer have more than one e-mail address?
The set could contain a single entry, so you can’t automatically infer that this is the case.

The key questions from the previous options are as follows:

• Q1: Can an e-mail address belong to more than one user?

• Q2: Can a customer have more than one e-mail address?

The answers to these questions can be formed into a truth table, as in Table 5-4.

Table 5-4. Deciding the Cardinality of an Entity Relationship

Q1 Answer Q2 Answer Relationship Between Customer and Email

No No One-to-one

Yes No One-to-many

No Yes Many-to-one

Yes Yes Many-to-many

These are the four ways in which the cardinality of the relationship between the objects
can be expressed. Each relationship can then be represented within the mapping table(s) in
various ways.

The One-to-One Association
A one-to-one association between classes can be represented in a variety of ways. At its sim-
plest, the properties of both classes are maintained in the same table. For example, a
one-to-one association between a User and an Email class might be represented as a single
table, as in Table 5-5.

Table 5-5. A Combined User/Email Table

ID Username Email

1 dcminter dcminter@example.com

2 jlinwood jlinwood@example.com

3 tjkitchen tjkitchen@example.com

The single database entity representing this combination of a User and an Email class is
shown in Figure 5-4.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 85

6935ch05_final.qxd 8/2/06 9:49 PM Page 85

Alternatively, the entities can be maintained in distinct tables with identical primary keys,
or with a key maintained from one of the entities into the other, as in Tables 5-6 and 5-7.

Table 5-6. The User Table

ID Username

1 dcminter

2 jlinwood

3 tjkitchen

Table 5-7. The Email Table

ID Username

1 dcminter@example.com

2 jlinwood@example.com

3 tjkitchen@example.com

It is possible to create a mandatory foreign key relationship from one of the entities to
the other, but this should not be applied in both directions because a circular dependency
would be created. It is also possible to omit the foreign key relationships entirely (as shown
in Figure 5-5) and rely upon Hibernate to manage the key selection and assignment.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING86

Figure 5-4. A single entity representing a one-to-one relationship

Figure 5-5. Entities related by primary keys

6935ch05_final.qxd 8/2/06 9:49 PM Page 86

If it is not appropriate for the tables to share primary keys, then a foreign key relationship
between the two tables can be maintained, with a “unique” constraint applied to the foreign
key column. For example, reusing the User table from Table 5-6, the Email table can be suit-
ably populated, as shown in Table 5-8.

Table 5-8. An Email Table with a Foreign Key to the User Table

ID Email UserID (Unique)

34 dcminter@example.com 1

35 jlinwood@example.com 2

36 tjkitchen@example.com 3

This has the advantage that the association can easily be changed from one-to-one to
many-to-one by removing the unique constraint. Figure 5-6 shows this type of relationship.

The One-to-Many and Many-to-One Association
A one-to-many association (or from the perspective of the other class, a many-to-one associa-
tion) can most simply be represented by the use of a foreign key, with no additional
constraints.

The relationship can also be maintained by the use of a link table. This will maintain a for-
eign key into each of the associated tables, which will itself form the primary key of the link
table. An example of this is shown in Tables 5-9, 5-10, and 5-11.

Table 5-9. A Simple User Table

ID Username

1 dcminter

2 jlinwood

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 87

Figure 5-6. Entities related by a foreign key relationship

6935ch05_final.qxd 8/2/06 9:49 PM Page 87

Table 5-10. A Simple Email Table

ID Email

1 dcminter@example.com

2 dave@example.com

3 jlinwood@example.com

4 jeff@example.com

Table 5-11. A Link Table Joining User and Email in a One-to-Many Relationship

UserID EmailID

1 1

1 2

2 3

2 4

Additional columns can be added to the link table to maintain information on the order-
ing of the entities in the association.

A unique constraint must be applied to the “one” side of the relationship (the userId col-
umn of the UserEmailLink table in Figure 5-7); otherwise, the link table can represent the set of
all possible relationships between User and Email entities—a many-to-many set association.

The Many-to-Many Association
As noted at the end of the previous section, if a unique constraint is not applied to the “one”
end of the relationship when using a link table, it becomes a limited sort of many-to-many
relationship. All of the possible combinations of User and Email can be represented, but it is
not possible for the same User to have the same e-mail address entity associated twice,
because that would require the compound primary key to be duplicated.

If instead of using the foreign keys together as a compound primary key, we give the link
table its own primary key (usually a surrogate key), the association between the two entities
can be transformed into a full many-to-many relationship, as shown in Table 5-12.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING88

Figure 5-7. A relationship represented by a link table (duplicates are not permitted because of the
use of a compound primary key)

6935ch05_final.qxd 8/2/06 9:49 PM Page 88

Table 5-12. A Many-to-Many User/Email Link Table

ID UserID EmailID

1 1 1

2 1 2

3 1 3

4 1 4

5 2 1

6 2 2

Table 5-12 might describe a situation in which the user dcminter receives all e-mail sent
to any of the four addresses, whereas jlinwood receives only e-mail sent to his own accounts.

When the link table has its own independent primary key, as with the association shown
in Figure 5-8, thought should be given to the possibility that a new class should be created to
represent the contents of the link table as an entity in its own right.

Applying Mappings to Associations
The mappings are applied to express the various different ways of forming associations in the
underlying tables—there is no automatically correct way to represent them.

In addition to the basic choice of the approach to take, the mappings are used to specify
the minutiae of the tables’ representations. While Hibernate tends to use sensible default val-
ues when possible, it is often desirable to override these. For example, the foreign key names
generated automatically by Hibernate will be effectively random—whereas an informed
developer can apply a name (e.g., FK_USER_EMAIL_LINK) to aid in the debugging of constraint
violations at run time.

Types of Mapping
At present, Hibernate supports two standard ways to express the mappings.

The technique that has been available the longest is the use of XML mapping files. As the
most mature approach, this is currently the best way to control Hibernate, and gives the most
sophisticated control over the Hibernate feature set. You have seen examples of simple map-
ping files in Chapters 1 and 3.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 89

Figure 5-8. A many-to-many relationship represented by a link table (duplicates are permitted
because of the use of a surrogate key)

6935ch05_final.qxd 8/2/06 9:49 PM Page 89

These files can be created directly with a text editor or with the help of various tools cre-
ated by the Hibernate team and others. We discuss the details of XML mapping files in
Chapter 8.

Hibernate now also supports the Annotations feature introduced in Java 5. This permits
the use of a special syntax to include metadata directly in the source code for the application.
While this allows the core features of Hibernate to be controlled, many of the additional fea-
tures cannot be specified in annotations. There is therefore something of a trade-off between
the advantages of maintaining the mapping information directly within the associated source
code, and the more flexible features available from the XML-based mappings. We discuss the
details of annotation-based mapping in Chapter 6.

Other Information Represented in Mappings
While Hibernate can determine a lot of sensible default values for the mappings, most of
these can be overridden by one or both of the file- and XML-based approaches. Some apply
directly to mapping; others, such as the foreign key names, are really only pertinent when
the mapping is used to create the database schema. Lastly, some mappings can also provide
a place to configure some features that are perhaps not “mappings” in the purest sense. The
final sections of this chapter discuss the features that Hibernate supports in addition to
those already mentioned.

Specification of (Database) Column Types and Sizes
Java provides the primitive types and allows user declaration of interfaces and classes to
extend these. Relational databases generally provide a small subset of “standard” types, and
then provide additional proprietary types.

Restricting yourself to the proprietary types will still cause problems, as there are only
approximate correspondences between these and the Java primitive types.

A typical example of a problematic type is java.lang.String (treated by Hibernate as
if it were a primitive type since it is used so frequently), which by default will be mapped to
a fixed-size character data database type. Typically, the database would perform poorly if a
character field of unlimited size were chosen—but lengthy String fields will be truncated
as they are persisted into the database.

By overriding the default type mappings, the developer can make appropriate trade-offs
between storage space, performance, and fidelity to the original Java representation.

The Mapping of Inheritance Relationships to the Database
There is no SQL standard for representing inheritance relationships for the data in tables; and
while some database implementations provide a proprietary syntax for this, not all do. Hiber-
nate provides several configurable ways in which to represent inheritance relationships, and
the mapping file permits users to select a suitable approach for their model.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING90

6935ch05_final.qxd 8/2/06 9:49 PM Page 90

Primary Key
Hibernate demands that a primary key be used to identify entities. The choice of a surrogate
key, a key chosen from the business data, and/or a compound primary key can be made via
the mapping file.

When a surrogate key is used, Hibernate also permits the key-generation technique to be
selected—from a range of techniques that vary in portability and efficiency.

The Use of SQL Formula–Based Properties
It is sometimes desirable that a property of an entity should be maintained not as data directly
stored in the database, but rather as a function performed on that data—for example, a sub-
total field should not be managed directly by the Java logic, but instead maintained as an
aggregate function of some other property.

Mandatory and Unique Constraints
As well as the implicit constraints of a primary or foreign key relationship, you can specify that
a field must not be duplicated—for example, a username field should often be unique.

Fields can also be made mandatory—for example, requiring a message entity to have both
a subject and message text.

The generated database schema will contain corresponding NOT NULL and UNIQUE constraints
so that it is literally impossible to corrupt the table with invalid data (rather, the application logic
will throw an exception if any attempt to do so is made).

Note that primary keys are implicitly both mandatory and unique.

Cascading of Operations
As alterations are made to the object model, operations on some objects should cascade
through to related objects. For example, deleting a stocked item should perhaps cause any
associated catalog entries to be deleted. The reverse—deleting a single catalog entry—should
not necessarily cause the stocked item to be deleted from the database entirely!

It would be awkward to manage the appropriate cascading rules from code alone, so
cascading rules can be specified at a fine level of detail within the mappings.

Summary
This chapter has given you an overview of the reason why mapping files are needed, and what
features they support beyond these absolute requirements. It has discussed the various types
of associations, and the circumstances under which you would choose to use them.

The next two chapters look at how mappings are specified using annotations and XML
files respectively.

CHAPTER 5 ■ AN OVERVIEW OF MAPPING 91

6935ch05_final.qxd 8/2/06 9:49 PM Page 91

6935ch05_final.qxd 8/2/06 9:49 PM Page 92

Mapping with Annotations

In Chapter 5, we discussed the need to create mappings between the database model and the
object model. Mappings can be created as separate XML files, or as Java 5 annotations inline
with the source code for your POJOs. In this chapter, we discuss the use of annotations, and in
the next chapter, we will discuss the use of XML files.

Java 5 Features
Java 5 was introduced in late 2004 as a major new release of the language. Annotations are not
supported by versions of Java prior to this, so while core Hibernate 3 is compatible with earlier
versions, you will not be able to take advantage of the features described in this chapter unless
your development, compilation, and runtime tools support at least version 5 of the language
(version 6 of Java, codenamed Mustang, is expected some time in late 2006).

Since we must perforce assume that you have a Java 5 environment available to you, the
examples in this chapter will also take advantage of some of the other enhanced language fea-
tures introduced in Java 5, as follows:

• Generics

• Enhanced for loops

• Static imports

• Enumerations

• Autoboxing

• Variable parameter lists

Using these features will make the source code for this chapter noticeably more com-
pact. Similarly, annotation-based mappings are significantly terser than their XML-based
counterparts.

Creating Hibernate Mappings with Annotations
Prior to annotations, the only way to create mappings was through XML files—although
tools from Hibernate and third-party projects allowed part or all of these to be generated
from Java source code. Although using annotations is the newest way to define mappings, it
is not automatically the best way to do so. We will briefly discuss the drawbacks and benefits
of annotations before discussing when and how to apply them.

93

C H A P T E R 6

■ ■ ■

6935ch06_final.qxd 8/2/06 9:47 PM Page 93

Cons of Annotations
Using annotations immediately restricts your code to a Java 5 environment. This immediately
rules out the use of annotations for some developers, as some application servers do not yet
support this version of the JVM. Even when there are no technical reasons why a current JVM
could not be used, many shops are quite conservative in the deployment of new technologies.

If you are migrating from a Hibernate 2 environment or an existing Hibernate 3 environ-
ment, you will already have XML-based mapping files to support your code base. All else
being equal, you will not want to re-express these mappings using annotations just for the
sake of it.

If you are migrating from a legacy environment, you may not want to alter the preexisting
POJO source code, in order to avoid contaminating known-good code with possible bugs.

If you do not have the source code to your POJOs (because it has been lost, or because it
was generated by an automated tool), you may prefer the use of external XML-based map-
pings to the decompilation of class files to obtain Java source code for alteration.

Maintaining the mapping information as external XML files allows the mapping infor-
mation to be changed to reflect business changes or schema alterations without forcing you
to rebuild the application as a whole.

Hibernate 3 support for annotation-based mappings is not yet as mature as its support
for XML-based mapping files. For example, while you can still make appropriate foreign key
relationships for use in schema generation, you cannot generally name the foreign keys used.

Pros of Annotations
Having considered the drawbacks, there are some powerful benefits to contrast against them.

First, and perhaps most persuasively, we find annotations-based mappings to be far more
intuitive than their XML-based alternatives, as they are immediately in the source code along
with the properties that they are associated with.

Partly as a result of this, annotations are less verbose than their XML equivalents, as evi-
denced by the contrast between Listings 6-1 and 6-2.

Listing 6-1. A Minimal Class Mapped Using Annotations

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Sample {

@Id
public Integer id;
public String name;

}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS94

6935ch06_final.qxd 8/2/06 9:47 PM Page 94

Listing 6-2. A Minimal Class Mapped Using XML

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE

hibernate-mapping
PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping default-access="field">
<class name="Sample">

<id type="int" column="id">
<generator class="native"/>

</id>
<property name="name" type="string"/>

</class>
</hibernate-mapping>

Some of this verbosity is in the nature of XML itself (the tag names and the boilerplate
document type declaration), and some of it is due to the closer integration of annotations
with the source code. Here, for example, the XML file must explicitly declare that field access
is used in place of property access (i.e., the fields are accessed directly rather than through
their get/set methods), but the annotation infers this from the fact that it has been applied
to the id field rather than the getId() method.

Hibernate uses and supports the EJB 3 persistence annotations. If you elect not to use
Hibernate-specific features in your code and annotations, you will have the freedom to deploy
your entities to environments using other ORM tools that support EJB 3.

Finally—and perhaps a minor point—because the annotations are compiled directly into
the appropriate class files, there is less risk of a missing or stale mapping file causing problems
at deployment (this point will perhaps prove most persuasive to those who already have some
experience with this hazard of the XML technique).

Choosing Which to Use
When you are creating a Hibernate application that has complete or primary ownership of its
database, and that is a new project, we would generally recommend the use of annotations.

If you intend to make your application portable to other EJB 3–compliant ORM appli-
cations, you must use annotations to represent the mapping information. Hibernate 3 XML
file–based mapping is a proprietary format. However, you may lose this benefit if you rely
upon any of the Hibernate 3–specific annotations (that is to say, annotations taken from
the org.hibernate package tree rather than the javax.persistence package tree).

If you are migrating an existing application to Hibernate, or creating a new project reliant
upon a database primarily owned by other applications, you should use the greater flexibility
of XML-based mappings to ensure that your project will not be unduly inconvenienced by
changes to the database schema.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 95

6935ch06_final.qxd 8/2/06 9:47 PM Page 95

Using Annotations in Your Application
You will need to install the Hibernate 3 annotations toolset, available from the Hibernate
annotations page (http://annotations.hibernate.org). If you do not already use JDK 5.0, you
will need to upgrade to take advantage of the native support for annotations.

■Tip If you want to declare your mappings inline with your source code, but cannot use a Java 5 environ-
ment, the XDoclet tool allows you to use javadoc-style comments to achieve a similar effect. XDoclet can be
obtained from http://xdoclet.sourceforge.net.

Your application needs the hibernate-annotations.jar and ejb3-persistence.jar files
provided in the annotations toolset.

If you are using a hibernate.cfg.xml file to establish the mapping configuration, you will
need to provide the fully qualified name of the annotated class with the <mapping> element:

<mapping class="com.hibernatebook.annotations.Book"/>

When you are configuring the SessionFactory, you will need to make use of an
AnnotationConfiguration object instead of the Configuration object used with XML map-
pings, as follows:

SessionFactory factory =
new AnnotationConfiguration().configure().buildSessionFactory();

If you prefer to configure the mappings manually rather than through the hibernate.
cfg.xml file, you can do this through the AnnotationConfiguration object, as follows:

AnnotationConfiguration config = new AnnotationConfiguration();
config.addAnnotatedClass(Book.class);
SessionFactory factory = config.configure().buildSessionFactory();

If you need to use your annotated entities from within an EJB 3 container, you must use
the standard EntityManager instead of the Hibernate-specific Session. Hibernate provides an
implementation of EntityManager as a separate download. At the time of writing, this is still a
beta version, but as it closely follows the state of the EJB 3 specification, you should have little
trouble migrating code from the current implementation over to any final release (or to third-
party EntityManagers). See Appendix A for details of how to use the Hibernate EntityManager.

EJB 3 Persistence Annotations
In Chapter 3, we walked you through the creation of a very simple application using the basic
XML mapping files—annotations might have been simpler, but as already noted, only Java 5
users would be able to use an annotation-based example.

When you develop using annotations, you start with a Java class, and then annotate the
source code listing with metadata notations. In J2SE 5.0, the Java Runtime Environment (JRE)
parses these annotations. Hibernate uses Java reflection to read the annotations and apply the

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS96

6935ch06_final.qxd 8/2/06 9:47 PM Page 96

mapping information. If you want to use the Hibernate tools to generate your database
schema, you must compile your entity classes containing their annotations first.

The full set of persistence annotations available in the EJB 3 API is listed in Table 6-1. In
this section, we are going to introduce the significant core of these annotations alongside a
simple set of classes to illustrate how they are applied.

Table 6-1. The EJB 3 Annotations

Attribute Name Target Purpose

AttributeOverride/ T, M, and F Overrides the default column details of embedded
AttributeOverrides (component) entities.

Basic M and F Overrides the default fetch strategy and nullability
of basic fields and properties.

Column M and F Associates a field or property of the class with a col-
umn in the mapped table.

ColumnResult Pm Used as a parameter of the @SqlResultSetMapping
annotation; permits the fields of an entity to be
returned as columns in a conventional JDBC
ResultSet.

DiscriminatorColumn T Overrides the default behavior of the discriminator
column in single or joined table inheritance strate-
gies.

DiscriminatorValue T Determines the value associated with the entity in
the discriminator column of the root of the entity’s
inheritance hierarchy.

Embeddable T Marks an entity as being an embeddable (compo-
nent) entity.

Embedded M and F Marks a field or property as consisting of an embed-
ded (component) entity.

EmbeddedId M and F Marks a primary key field as consisting of an
embedded (component) entity. This is mutually
exclusive with the @Id annotation.

Entity T Identifies an entity and allows attributes, such as its
name, to be overridden from the defaults.

EntityListeners T Allows appropriate javax.persistence.
EntityListener classes to be invoked during the life
cycle of the marked entity.

EntityResult Pm Used as a parameter of the @SqlResultSetMapping
annotation; permits the fields of an entity to be
returned as columns in a conventional JDBC
ResultSet.

Enumerated M and F Defines a field or property as being an enumerated
type.

ExcludeDefaultListeners T Prevents the default EntityListeners from being
invoked during the life cycle of the marked entity.

ExcludeSuperclassListeners T Prevents the EntityListeners of the superclass from
being invoked during the life cycle of the marked
entity.

Continued

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 97

6935ch06_final.qxd 8/2/06 9:47 PM Page 97

Table 6-1. Continued

Attribute Name Target Purpose

FieldResult Pm Used as a parameter of the @SqlResultSetMapping
annotation, permits the fields of an entity to be
returned as columns in a conventional JDBC
ResultSet.

GeneratedValue M and F Allows generation strategies to be specified for the
marked entity’s primary key value(s).

Id M and F Identifies the primary key of the entity. Placement
of the @Id attribute also determines whether the
default access mode for the entity class is field or
property access.

IdClass T Applied to indicate that an entity’s primary key is
represented with columns corresponding to the
fields of another entity. The appropriate fields form-
ing the primary key will be marked with the @Id
attribute.

Inheritance T Marks an entity as being the root of an entity inher-
itance hierarchy (i.e., the highest persistent class in
the class inheritance hierarchy).

JoinColumn/JoinColumns T, M, and F Defines the column(s) being used as a foreign key
into another table.

JoinTable M and F Allows the details of the link table to be specified in
a one-to-many or many-to-many relationship.

Lob M and F Marks a field or property as being stored as a large
object data type—typically a binary large object
(BLOB). This can be used to remove the length limi-
tations on strings and binary data, but usually
implies reduced scope for querying the data so
marked.

ManyToMany M and F Allows a many-to-many association to be defined
between entities.

ManyToOne M and F Allows a many-to-one association to be defined
between entities.

MapKey M and F Allows a key to be specified when making an associ-
ation with a Map object.

MappedSuperclass T Allows a non-persistence class to be used as the
basis of the mapping information for its derived
classes.

NamedNativeQuery/ Pk and T Allows a named SQL query to be stored in the
NamedNativeQueries annotations.

NamedQuery/NamedQueries Pk and T Allows a named EJB QL query to be stored in the
annotations.

OneToMany M and F Allows a one-to-many association to be defined
between entities.

OneToOne M and F Allows a one-to-one association to be defined
between entities.

OrderBy MF Allows the ordering of a collection to be defined as
it is retrieved.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS98

6935ch06_final.qxd 8/2/06 9:47 PM Page 98

Attribute Name Target Purpose

PersistenceContext/ T, M, and F For use with @EntityManager; marks a field or
PersistenceContexts property as representing the EntityManager to be

injected by the container.

PersistenceUnit/ T, M, and F For use with @EntityManager; marks a field or
PersistenceUnits property as representing the EntityManagerFactory

to be injected by the container.

PostLoad M Marks a method for invocation after performing a
load operation on the entity.

PostPersist M Marks a method for invocation after performing a
persist operation on the entity.

PostRemove M Marks a method for invocation after performing a
remove operation on the entity.

PostUpdate M Marks a method for invocation after performing an
update operation on the entity.

PrePersist M Marks a method for invocation prior to performing
a persist operation on the entity.

PreRemove M Marks a method for invocation prior to performing
a remove operation on the entity.

PreUpdate M Marks a method for invocation prior to performing
an update operation on the entity.

PrimaryKeyJoinColumn/ T, M, and F Allows the columns joining a secondary table to a
PrimaryKeyJoinColumns primary table to be specified.

QueryHint Pm Allows implementation-specific “hints” to be pro-
vided as a parameter of named queries and named
native queries.

SecondaryTable/ T Allows an entity’s basic fields and properties to be
SecondaryTables persisted to more than one table.

SequenceGenerator Pk, T, M, and F Allows a named primary key generator to be
defined for use by one or more entities.

SqlResultSetMapping Pk and T Allows an entity to be mapped as if it were a named
native query (i.e., so that it can be retrieved as a
conventional JDBC ResultSet).

Table T Pk, T, M, and F Allows the default details of an entity’s primary
table to be overridden.

TableGenerator Pk, T, M, and F Overrides the default properties of the table used to
generate primary keys when the table generation
strategy of the generated value annotation is used
on the primary key field or property (the field or
property marked with the @Id annotation).

Temporal M and F Specifies the behavior of Date and Calendar fields or
properties (if omitted, such fields will be treated as
TIMESTAMP values).

Transient M and F Allows a field or property to be marked so that it
will not be persisted.

UniqueConstraint Pm Enforces a unique constraint at schema generation
time as a parameter of @Table.

Version M and F Marks the field or property serving as the optimistic
lock value of the entity.

Key to the Target column: Pk = package, T = type, M = method, F = field, Pm = parameter

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 99

6935ch06_final.qxd 8/2/06 9:47 PM Page 99

The set of example classes represents a publisher’s catalog of books. You’ll start with a sin-
gle class, Book, which has no annotations or mapping information. For this example’s purposes,
you do not have an existing database schema to work with, so you need to define your rela-
tional database schema as you go.

At the beginning of the example, the Book class is very simple. It has two fields, title and
pages; and an identifier, id, which is an integer. The title is a String object, and pages is an
integer. As we go through this example, we will add annotations, fields, and methods to the
Book class. The complete source code listing for the Book and Author classes is given at the end
of this chapter—the source files for the rest are available in the source code download for this
chapter on the Apress web site (www.apress.com).

Listing 6-3 gives the source code of the Book class, in its unannotated form, as a starting
point for the example.

Listing 6-3. The Book Class, Unannotated

package com.hibernatebook.annotations;

public class Book {

private String title;
private int pages;
private int id;

// Getters...

public int getId() {
return id;

}

public String getTitle() {
return title;

}

public int getPages() {
return pages;

}

// Setters...

public void setId(int id) {
this.id = id;

}

public void setTitle(String title) {
this.title = title;

}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS100

6935ch06_final.qxd 8/2/06 9:47 PM Page 100

public void setPages(int pages) {
this.pages = pages;

}
}

As you can see, this is a POJO. We are going to annotate this class as we go along, explain-
ing the concepts behind annotation.

Entity Beans with @Entity
The first step is to annotate the Book class as an EJB 3 entity bean. With traditional EJB, we
would have added an EJB marker interface to mark the class as an entity bean. Instead, we add
the @Entity annotation to the Book class, as follows:

package com.hibernatebook.annotations;
import javax.persistence.*;

@Entity
public class Book

The EJB 3 standard annotations are contained in the javax.persistence package, so we
import the appropriate annotations (here we will use wildcard imports to keep the listings short,
but in the downloadable source code accompanying this chapter, we use explicit imports such
as import javax.persistence.Entity;—annotations are imported in exactly the same way as
the ordinary interfaces that they resemble).

The @Entity annotation marks this class as an entity bean, so it must have a no-argument
constructor that is visible with at least protected scope. Hibernate supports package scope as
the minimum, but you lose portability to other EJB 3 containers if you take advantage of this.
Other EJB 3 rules for an entity bean class are that the class must not be final, and that the entity
bean class must be concrete. Many of the rules for EJB 3 entity bean classes and Hibernate 3
persistent objects are the same—partly because the Hibernate team had much input into the
EJB 3 design process, and partly because there are only so many ways to design a relatively
unobtrusive object-relational persistence solution.

As you can see, although we did have to add the import statement and the annotations,
we have not had to change the rest of the code. The POJO is essentially unchanged.

Primary Keys with @Id and @GeneratedValue
Each entity bean has to have a primary key, which you annotate on the class with the @Id
annotation. Typically, the primary key will be a single field, though it can also be a composite
of multiple fields.

The placement of the @Id annotation determines the default access strategy that
Hibernate will use for the mapping. If the annotation is applied to a field as shown in
Listing 6-4, then field access will be used.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 101

6935ch06_final.qxd 8/2/06 9:47 PM Page 101

Listing 6-4. A Class with Field Access

import javax.persistence.*;

@Entity
public class Sample {

@Id
int id;

public int getId() {
return this.id;

}

public void setId(int id) {
this.id = id;

}
}

If instead the annotation is applied to the getter for the field, as shown in Listing 6-5, then
property access will be used.

Listing 6-5. The Same Class with Property Access

import javax.persistence.*;

@Entity
public class Sample {

int id;

@Id
public int getId() {

return this.id;
}

public void setId(int id) {
this.id = id;

}
}

Here you can see one of the strengths of the annotations approach—because the annota-
tions are placed inline with the source code, information can be extracted from the context of
the mapping in the code, allowing many mapping decisions to be inferred rather than stated
explicitly—which helps to further reduce the verbosity of the annotations.

By default, the @Id annotation will automatically determine the most appropriate primary
key generation strategy to use—you can override this by also applying the @GeneratedValue
annotation. This takes a pair of attributes: strategy and generator. The strategy attribute must
be a value from the javax.persistence.GeneratorType enumeration. If you do not specify a
generator type, the default is AUTO. There are four different types of primary key generators on
GeneratorType, as follows:

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS102

6935ch06_final.qxd 8/2/06 9:47 PM Page 102

• AUTO: Hibernate decides which generator type to use, based on the database’s support
for primary key generation.

• IDENTITY: The database is responsible for determining and assigning the next primary
key.

• SEQUENCE: Some databases support a SEQUENCE column type. See the “Generating Primary
Key Values with @SequenceGenerator” section later in the chapter.

• TABLE: This type keeps a separate table with the primary key values. See the “Generating
Primary Key Values with @TableGenerator” section later in the chapter.

You will notice that the available values for the strategy attribute do not exactly match
the values for Hibernate’s primary key generators for XML mapping. If you need to use
Hibernate-specific primary key generation strategies, you can use some of the Hibernate
extensions described at the end of this chapter—but as always, you risk forfeiting portabil-
ity of your application to other EJB 3 environments when taking advantage of Hibernate-
specific features.

For the Book class, we are going to use the default key generation strategy. Letting
Hibernate determine which generator type to use makes your code portable between dif-
ferent databases. Because we want Hibernate to use property access to our POJO, we must
annotate the getter method for the identifier, not the field that it accesses:

@Id
@GeneratedValue
public int getId() {

return id;
}

Generating Primary Key Values with @SequenceGenerator
As noted in the section on the @Id tag, we can declare the primary key property as being
generated by a database sequence. A sequence is a database object that can be used as a
source of primary key values. It is similar to the use of an identity column type, except that
a sequence is independent of any particular table and can therefore be used by multiple
tables.

To declare the specific sequence object to use and its properties, you must include an
@SequenceGenerator annotation on the annotated field. Here’s an example:

@Id
@SequenceGenerator(name="seq1",sequenceName="HIB_SEQ")
@GeneratedValue(strategy=SEQUENCE,generator="seq1")
public int getId() {

return id;
}

Here, a sequence generation annotation named seq1 has been declared. This refers to the
database sequence object called HIB_SEQ. The name seq1 is then referenced as the generator
attribute of the @GeneratedValue annotation.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 103

6935ch06_final.qxd 8/2/06 9:47 PM Page 103

Only the sequence generator name is mandatory—the other attributes will take sensible
default values—but you should provide an explicit value for the sequenceName attribute as a
matter of good practice anyway. If not specified, the sequenceName value to be used is selected
by the persistence provider (i.e., Hibernate or EJB 3). The other (optional) attributes are
initialValue and allocationSize, which default to values of 1 and 50, respectively.

Generating Primary Key Values with @TableGenerator
The @TableGenerator annotation is used in a very similar way to the @SequenceGenerator
annotation—but because @TableGenerator manipulates a standard database table to obtain
its primary key values, instead of using a vendor-specific sequence object, it is guaranteed to
be portable between database platforms.

■Note For optimal portability and optimal performance, you should not specify the use of a table genera-
tor, but instead use the @GeneratorValue(strategy=GeneratorType.AUTO) configuration, which allows
the persistence provider to select the most appropriate strategy for the database in use.

As with the sequence generator, the name attributes of @TableGenerator are mandatory
and the other attributes are optional, with the table details being selected by the persistence
provider.

@Id
@TableGenerator(name="tablegen",

table="ID_TABLE",
pkColumnName="ID",
valueColumnName="NEXT_ID")

@GeneratedValue(strategy=TABLE,generator="tablegen")
public int getId() {

return id;
}

The optional attributes are as follows:

• allocationSize: Allows the increment on the primary key value to be specified.

• catalog: Allows the catalog that the table resides within to be specified.

• initialValue: Allows the starting primary key value to be specified.

• pkColumnName: Allows the primary key column of the table to be identified. The table
can contain the details necessary for generating primary key values for multiple
entities.

• pkColumnValue: Allows the primary key for the row containing the primary key genera-
tion information to be identified.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS104

6935ch06_final.qxd 8/2/06 9:47 PM Page 104

• schema: Allows the schema that the table resides within to be specified.

• table: The name of the table containing the primary key values.

• uniqueConstraints: Allows additional constraints to be applied to the table for schema
generation.

• valueColumnName: Allows the column containing the primary key generation informa-
tion for the current entity to be identified.

Because the table can be used to contain the primary key values for a variety of entries,
it is likely to contain a single row for each of the entities using it. It therefore needs its own
primary key (pkColumnName), as well as a column containing the next primary key value to
be used (pkColumnValue) for any of the entities obtaining their primary keys from it.

Compound Primary Keys with @Id, @IdClass, or @EmbeddedId
While the use of single column surrogate keys is advantageous for various reasons, you may
sometimes be forced to work with business keys. When these are contained in a single col-
umn, you can use @Id without specifying a generation strategy (forcing the user to assign a
primary key value before the entity can be persisted). However, when the primary key con-
sists of multiple columns, you need to take a different strategy to group these together in a
way that allows the persistence engine to manipulate the key values as a single object.

You must create a class to represent this primary key. It will not require a primary key of
its own, of course, but it must be a public class, must have a default constructor, must be seri-
alizable, and must implement hashCode() and equals() methods to allow the Hibernate code
to test for primary key collisions (i.e., they must be implemented with the appropriate data-
base semantics for the primary key values).

Your three strategies for using this primary key class once it has been created are as
follows:

• Mark it as @Embeddable and add to your entity class a normal property for it, marked
with @Id.

• Add to your entity class a normal property for it, marked with @EmbeddableId.

• Add properties to your entity class for all of its fields, mark them with @Id, and mark
your entity class with @IdClass, supplying the class of your primary key class.

All these techniques require the use of an id class because Hibernate must be supplied
with a primary key object when various parts of its persistence API are invoked. For example,
you can retrieve an instance of an entity by invoking the Session object’s get() method, which
takes as its parameter a single serializable object representing the entity’s primary key.

The use of @Id with a class marked as @Embeddable, as shown in Listing 6-6, is the most
natural approach. The @Embeddable tag can be used for non–primary key embeddable values
anyway (@Embeddable is discussed in more detail later in the chapter). It allows you to treat the
compound primary key as a single property, and it permits the reuse of the @Embeddable class
in other tables.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 105

6935ch06_final.qxd 8/2/06 9:47 PM Page 105

Listing 6-6. Using the @Id and @Embeddable Annotations to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
public class Account {

private String description;
private AccountPk id;

public Account (String description) {
this.description = description;

}

protected Account() {
}

@Id
public AccountPk getId() {

return this.id;
}

public String getDescription() {
return this.description;

}

public void setId(AccountPk id) {
this.id = id;

}

public void setDescription(String description) {
this.description = description;

}

@Embeddable
public static class AccountPk {

private String code;
private Integer number;

public AccountPk() {
}

public String getCode() {
return this.code;

}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS106

6935ch06_final.qxd 8/2/06 9:47 PM Page 106

public Integer getNumber() {
return this.number;

}

public void setNumber(Integer number) {
this.number = number;

}

public void setCode(String code) {
this.code = code;

}

public int hashCode() {
int hashCode = 0;
if(code != null) hashCode ^= code.hashCode();
if(number != null) hashCode ^= number.hashCode();
return hashCode;

}

public boolean equals(Object obj) {
if(!(obj instanceof AccountPk)) return false;
AccountPk target = (AccountPk)obj;
return ((this.code == null) ?

(target.code == null) :
this.code.equals(target.code))

&& ((this.number == null) ?
(target.number == null) :

this.number.equals(target.number));
}

}
}

The next most natural approach is the use of the @EmbeddedId tag. Here, the primary
key class cannot be used in other tables since it is not an @Embeddable entity, but it does
allow us to treat the key as a single attribute of the Account class (in Listings 6-7 and 6-8,
the implementation of AccountPk is identical to that in Listing 6-6, and is thus omitted for
brevity). Note that in Listings 6-7 and 6-8, the AccountPk class is not marked as @Embeddable.

Listing 6-7. Using the @EmbeddedId Annotation to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
public class Account {

private String description;
private AccountPk id;

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 107

6935ch06_final.qxd 8/2/06 9:47 PM Page 107

public Account(String description) {
this.description = description;

}

protected Account() {
}

@EmbeddedId
public AccountPk getId() {

return this.id;
}

public String getDescription() {
return this.description;

}

public void setId(AccountPk id) {
this.id = id;

}

public void setDescription(String description) {
this.description = description;

}

public static class AccountPk {
// ...

}
}

Finally, the use of the @IdClass and @Id annotations allows us to map the compound pri-
mary key class using properties of the entity itself corresponding to the names of the properties
in the primary key class. The names must correspond (there is no mechanism for overriding
this), and the primary key class must honor the same obligations as with the other two tech-
niques. The only advantage to this approach is its ability to “hide” the use of the primary key
class from the interface of the enclosing entity. The @IdClass annotation takes a value parame-
ter of Class type, which must be the class to be used as the compound primary key. The fields
that correspond to the properties of the primary key class to be used must all be annotated
with @Id—note in Listing 6-8 that the getCode() and getNumber() methods of the Account class
are so annotated, and the AccountPk class is not mapped as @Embeddable, but it is supplied as
the value of the @IdClass annotation.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS108

6935ch06_final.qxd 8/2/06 9:47 PM Page 108

Listing 6-8. Using the @IdClass and @Id Annotations to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
@IdClass(Account.AccountPk.class)
public class Account {

private String description;
private String code;
private Integer number;

public Account(String description) {
this.description = description;

}

protected Account() {
}

@Id
public String getCode() {

return this.code;
}

@Id
public Integer getNumber() {

return this.number;
}

public String getDescription() {
return this.description;

}

public void setDescription(String description) {
this.description = description;

}

public void setNumber(Integer number) {
this.number = number;

}

public void setCode(String code) {
this.code = code;

}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 109

6935ch06_final.qxd 8/2/06 9:47 PM Page 109

public static class AccountPk {
// ...

}
}

Regardless of which of these approaches we take to declare our compound primary key,
the table that will be used to represent it will require the same set of columns. Listing 6-9
shows the DDL that will be generated from any of Listings 6-6, 6-7, or 6-8.

Listing 6-9. The DDL Generated from the Annotated Account Class (Regardless of the
Approach Used)

create table Account (
code varchar(255) not null,
number integer not null,
description varchar(255),
primary key (code, number)

);

Database Table Mapping with @Table and @SecondaryTable
The @Table annotation allows you to specify the details of the table that will be used to per-
sist the entity in the database. If you omit the annotation, Hibernate will default to using
the class name for the table name, so you only need to provide this annotation if you want
to override that behavior. The @Table annotation provides four attributes, allowing you to
override the name of the table, its catalog, and its schema, and enforce unique constraints
on columns in the table. Typically, you would only provide a substitute table name thus:
@Table(name=" ORDER_HISTORY"). The unique constraints will be applied if the database
schema is generated from the annotated classes, and will supplement any column-specific
constraints (see discussions of @Column and @JoinColumn later in this chapter). They are not
otherwise enforced.

The @SecondaryTable annotation provides a way to model an entity bean that is persisted
across several different database tables. Here, in addition to providing an @Table annotation for
the primary database table, your entity bean can have an @SecondaryTable annotation, or an
@SecondaryTables annotation in turn containing zero or more @SecondaryTable annotations.
The @SecondaryTable annotation takes the same basic attributes as the @Table annotation, with
the addition of the join attribute. The join attribute defines the join column for the primary
database table. It accepts an array of javax.persistence.PrimaryKeyJoinColumn objects. If you
omit the join attribute, then it will be assumed that the tables are joined on identically named
primary key columns.

When an attribute in the entity is drawn from the secondary table, it must be marked with
the @Column annotation, with a table attribute identifying the appropriate table. Listing 6-10
shows how a property of the Customer entity could be drawn from a second table mapped in
this way.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS110

6935ch06_final.qxd 8/2/06 9:47 PM Page 110

Listing 6-10. An Example of a Field Access Entity Mapped Across Two Tables

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUSTOMER_DETAILS")
public class Customer {

@Id
public int id;

public String name;

@Column(table="CUSTOMER_DETAILS")
public String address;

}

Columns in the primary or secondary tables can be marked as having unique values
within their tables by adding one or more appropriate @UniqueConstraint annotations to
@Table or @SecondaryTable’s uniqueConstraints attribute. For example, to mark the name
field in the preceding declaration as being unique, use the following:

@Entity
@Table(

name="CUSTOMER",
uniqueConstraints={@UniqueConstraint(columnNames="name")}

)
@SecondaryTable(name="CUSTOMER_DETAILS")
public class Customer {

...
}

Persisting Basic Types with @Basic
By default, properties and instance variables in your POJO are persistent—Hibernate will store
their values for you. The simplest mappings are therefore for the “basic” types. These include
primitives, primitive wrappers, arrays of primitives or wrappers, enumerations, and any types
that implement Serializable but are not themselves mapped entities. These are all mapped
implicitly—no annotation is needed. By default, such fields are mapped to a single column,
and eager fetching is used to retrieve them (i.e., when the entity is retrieved from the database,
all the basic fields and properties are retrieved). Also, when the field or property is not a primi-
tive, it can be stored and retrieved as a null value.

This default behavior can be overridden by applying the @Basic annotation to the appro-
priate class member. This annotation takes two optional attributes, and is itself entirely

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 111

6935ch06_final.qxd 8/2/06 9:47 PM Page 111

optional. The first attribute is named optional and takes a boolean. Defaulting to true, this
can be set to false to provide a hint to schema generation that the associated column should
be created NOT NULL. The second is named fetch and takes a member of the enumeration
FetchType. This is EAGER by default, but can be set to LAZY to permit loading on access of the
value.

The use of lazy loading is unlikely to be valuable, except when large serializable objects
have been mapped as basic types (rather than given entity mappings of their own) and
retrieval time may become significant. While the (default) EAGER value must be honored, the
LAZY flag is considered to be a hint, and can be ignored by the persistence engine.

The @Basic attribute is usually omitted, with the @Column attribute being used where
the @Basic annotation’s optional attribute might otherwise be used to provide the NOT NULL
behavior.

Omitting Persistence with @Transient
Some fields may be used at run time only, and should be discarded from objects as they are
persisted into the database. The EJB 3 specification provides the @Transient annotation for
these transient fields. The @Transient annotation does not have any attributes—you just add
it to the instance variable or the getter method as appropriate for the entity bean’s property
access strategy.

For our example, we contrive to add a Date field named publicationDate, which will not
be stored in the database to our Book class. We mark this field transient thus:

@Transient
public Date getPublicationDate() {

return publicationDate;
}

Because we are using a property access strategy for our Book class, we must put the
@Transient annotation on the getter method.

Mapping Properties and Fields with @Column
The @Column annotation is used to specify the details of the column to which a field or prop-
erty will be mapped. Some of the details are schema related, and therefore apply only if the
schema is generated from the annotated files. Others apply and are enforced at run time by
Hibernate (or the EJB 3 persistence engine). It is optional, with an appropriate set of default
behaviors, but is often useful when overriding default behavior, or when you need to fit your
object model into a preexisting schema. It is more commonly used than the similar @Basic
annotation, with the following attributes commonly being overridden:

name permits the name of the column to be explicitly specified—by default, this would
be the name of the property. However, it is often necessary to override the default
behavior when it would otherwise result in an SQL keyword being used as the column
name (e.g., user).

length permits the size of the column used to map a value (particularly a String value)
to be explicitly defined. The column size defaults to 255, which might otherwise result
in truncated String data, for example.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS112

6935ch06_final.qxd 8/2/06 9:47 PM Page 112

nullable permits the column to be marked NOT NULL when the schema is generated. The
default is that fields should be permitted to be null; however, it is common to override
this when a field is, or ought to be, mandatory.

unique permits the column to be marked as containing only unique values. This defaults
to false, but commonly would be set for a value that might not be a primary key but
would still cause problems if duplicated (such as username).

We have marked up the title field of our Book entity using the @Column entity to show how
three of these attributes would be applied:

@Column(name="working_title",length=200,nullable=false)
public String getTitle() {

return title;
}

The remaining attributes, less commonly used, are as follows:

table is used when the owning entity has been mapped across one or more secondary
tables. By default, the value is assumed to be drawn from the primary table, but the name
of one of the secondary tables can be substituted here (see the @SecondaryTable annota-
tion example earlier in this chapter).

insertable defaults to true, but if set to false, the annotated field will be omitted from
insert statements generated by Hibernate (i.e., it won’t be persisted).

updatable defaults to true, but if set to false, the annotated field will be omitted from
update statements generated by Hibernate (i.e., it won’t be altered once it has been
persisted).

columnDefinition can be set to an appropriate DDL fragment to be used when generating
the column in the database. This can only be used during schema generation from the
annotated entity, and should be avoided if possible, since it is likely to reduce the porta-
bility of your application between database dialects.

precision permits the precision of decimal numeric columns to be specified for schema
generation, and will be ignored when a non-decimal value is persisted. The value given
represents the number of digits in the number (usually requiring a minimum length of
n+1, where n is the scale).

scale permits the scale of decimal numeric columns to be specified for schema genera-
tion and will be ignored where a non-decimal value is persisted. The value given
represents the number of places after the decimal point.

Modeling Entity Relationships
Naturally, annotations also allow you to model associations between entities. EJB 3 supports
one-to-one, one-to-many, many-to-one, and many-to-many associations. Each of these has
its corresponding annotation.

We discussed the various ways in which these mappings can be established in the tables
in Chapter 5. In this section, we will show how the various mappings are requested using the
annotations.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 113

6935ch06_final.qxd 8/2/06 9:47 PM Page 113

Mapping an Embedded (Component) One-to-One Association
When all the fields of one entity are maintained within the same table as another, the
enclosed entity is referred to in Hibernate as a component. The EJB 3 standard refers to
such an entity as being embedded.

The @Embedded and @Embeddable attributes are used to manage this relationship. In this
book’s database example, we associate an AuthorAddress class with an Author class in this way.

The AuthorAddress class is marked with the @Embeddable annotation. An embeddable
entity must be composed entirely of basic fields and attributes. An embeddable entity can
only use the @Basic, @Column, @Lob, @Temporal, and @Enumerated annotations. It cannot main-
tain its own primary key with the Id tag because its primary key is the primary key of the
enclosing entity.

The @Embeddable annotation itself is purely a marker annotation, and takes no additional
attributes, as demonstrated in Listing 6-11. Typically, the fields and properties of the embedd-
able entity need no further markup.

Listing 6-11. Marking an Entity for Embedding Within Other Entities

@Embeddable
public class AuthorAddress {
...
}

The enclosing entity then marks appropriate fields or getters in entities, making use of the
embeddable class with the @Embedded annotation, as shown in Listing 6-12.

Listing 6-12. Marking an Embedded Property

@Embedded
public AuthorAddress getAddress() {

return this.address;
}

The @Embedded annotation draws its column information from the embedded type, but
permits the overriding of a specific column or columns with the @AttributeOverride and
@AttributeOverrides tags (the latter to enclose an array of the former if multiple columns are
being overridden). For example, Listing 6-13 shows how to override the default column names
of the address and country attributes of AuthorAddress with columns named ADDR and NATION.

Listing 6-13. Overriding Default Attributes of an Embedded Property

@Embedded
@AttributeOverrides({

@AttributeOverride(name="address",column=@Column(name="ADDR")),
@AttributeOverride(name="country",column=@Column(name="NATION"))

})
public AuthorAddress getAddress() {

return this.address;
}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS114

6935ch06_final.qxd 8/2/06 9:47 PM Page 114

Neither Hibernate nor the EJB 3 standard supports mapping an embedded object across
more than one table. In practice, if you want this sort of persistence for your embedded entity,
you will usually be better off making it a first-class entity (i.e., not embedded) with its own
@Entity marker and @Id annotations, and then mapping it via a conventional one-to-one
association, as explained in the next section.

Mapping a Conventional One-to-One Association
There is nothing intrinsically wrong with mapping a one-to-one association between two enti-
ties where one is not a component of (i.e., embedded into) the other. The relationship is often
somewhat suspect, however. You should give some thought to using the embedded technique
described previously before using the @OneToOne annotation.

Assuming that you are resolute on declaring the association in this way (perhaps because
you anticipate converting it to a one-to-many or many-to-one relationship in the foreseeable
future), applying the annotation is quite simple—all of the attributes are optional. Listing 6-14
shows how simply a relationship like this might be declared.

Listing 6-14. Declaring a Simple One-to-One Relationship

@OneToOne
public Address getAddress() {

return this.address;
}

The @OneToOne annotation permits the following optional attributes to be specified:

targetEntity can be set to the class of an entity storing the association. If left unset, the
appropriate type will be inferred from the field type, or the return type of the property’s
getter.

cascade can be set to any of the members of the javax.persistence.CascadeType enumer-
ation. It defaults to none being set. See the “Cascading Operations” sidebar for a
discussion of these values.

fetch can be set to the EAGER or LAZY members of FetchType.

optional indicates whether the value being mapped can be null.

mappedBy indicates that a bidirectional one-to-one relationship is owned by the named
entity.1 The owning entity contains the primary key of the subordinate entity.

Mapping a Many-to-One or One-to-Many Association
A many-to-one association and a one-to-many association are the same association seen from
the perspective of the owning and subordinate entities, respectively.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 115

1. An association is bidirectional if each entity maintains a property or field representing its end of the
same relationship. For example, if our Address class maintained a reference to the Publisher located
there, and the Publisher class maintained a reference to its Address, then the association would be
bidirectional.

6935ch06_final.qxd 8/2/06 9:47 PM Page 115

The simplest way to maintain a many-to-one relationship between two entities is by
managing the foreign key of the entity at the “one” end of the one-to-many relationship as a
column in the “many” entity’s table.

The @OneToMany annotation can be applied to a field or property value for a collection or
an array representing the mapped “many” end of the association.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS116

CASCADING OPERATIONS

When an association between two entities is established (for example, a one-to-one association between
Human and Pet), it is common to want certain persistence operations on one entity to also be applied to the
entity that it is linked to. Take, for example, the following code:

Human dave = new Human("dave");
Pet cat = new PetCat("Tibbles");
dave.setPet(cat);
session.save(dave);

In the last line, highlighted in bold, we are likely to want to save the Pet object associated with the
Human object. In a one-to-one relationship, we usually expect all operations on the owning entity to be prop-
agated through—that is, to be cascaded—to the dependent entity. In other associations this is not true, and
even in a one-to-one relationship we may have special reasons for wanting to spare the dependent entity
from delete operations (perhaps for auditing reasons).

We are therefore able to specify the types of operations that should be cascaded through an association
to another entity using the cascade annotation, which takes an array of members of the CascadeType enu-
meration. The members correspond with the names of the key methods of the EntityManager class used
for EJB 3 persistence, and have the following rough correspondence with operations on entities:

• ALL requires all operations to be cascaded to dependent entities. This is the same as including MERGE,
PERSIST, REFRESH, and REMOVE.

• MERGE cascades updates to the entity’s state in the database (i.e., UPDATE . . .).

• PERSIST cascades the initial storing of the entity’s state in the database (i.e., INSERT. . .).

• REFRESH cascades the updating of the entity’s state from the database (i.e., SELECT . . .).

• REMOVE cascades deletion of the entity from the database (i.e., DELETE . . .).

• If no cascade type is specified, no operations will be cascaded through the association.

In the light of these options, the appropriate annotation for the relationship between a publisher and its
address would be as follows:

@OneToOne(cascade=CascadeType.ALL)
public Address getAddress() {

return this.address;
}

6935ch06_final.qxd 8/2/06 9:47 PM Page 116

The mappedBy attribute is mandatory on a bidirectional association and optional (being
implicit) on a unidirectional association.

cascade is optional, taking a member of the javax.persistence.CascadeType enumeration
and dictating the cascade behavior of the mapped entity.

targetEntity is optional, as it can usually be deduced from the type of the field or prop-
erty, as in Listing 6-15, where the property represents a Set of Book entities, making the target
entity implicitly Book. However, if necessary (if generics are not being used, for example), the
class of the target entity can be provided here.

fetch is optional, allowing lazy or eager fetching to be specified as a member of the
javax.persistence.FetchType enumeration.

Listing 6-15. Mapping a One-to-Many Relationship from the Book Entity to the Publisher Entity

@OneToMany(cascade = ALL,mappedBy = "publisher")
public Set<Book> getBooks() {

return books;
}

The many-to-one end of this relationship is expressed in similar terms to the one-to-
many end, as shown in Listing 6-16.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 117

COLLECTION ORDERING

EJB 3 does not provide for maintaining the ordering of an ordered collection such as an array or a list—
see the “Ordering Collections with @IndexColumn” section of the chapter for discussion on how the
@IndexColumn annotation can be used in a non-portable way to remedy this deficiency. The collection,
however, can be specified in terms of the fields of the associated entity at retrieval time by means of the
@OrderBy annotation. For example, if we were to retrieve a list ordered by the books’ names in ascend-
ing order, we could annotate a suitable method.

The following code snippet specifies a retrieval order for an ordered collection.

@OneToMany(cascade = ALL, mappedBy = "publisher"
@OrderBy("name ASC")
public List<Book> getBooks() {

return books
}

The value of the @OrderBy annotation is an ordered list of the field names to sort by, each one option-
ally appended with ASC (for ascending order, as in the preceding code) or DESC (for descending order). If
neither ASC nor DESC is appended to one of the field names, the order will default to ascending. @OrderBy
can be applied to any collection-valued association.

6935ch06_final.qxd 8/2/06 9:47 PM Page 117

Listing 6-16. Mapping a Many-to-One Relationship from the Publisher Entity to the Book Entity

@ManyToOne
@JoinColumn(name = "publisher_id")
public Publisher getPublisher() {

return publisher;
}

The @ManyToOne annotation takes a similar set of attributes to @OneToMany. The following
list describes the attributes, all of which are optional.

cascade indicates the appropriate cascade policy for operations on the association;
it defaults to none.

fetch indicates the fetch strategy to use; it defaults to LAZY.

optional indicates whether the value can be null; it defaults to true.

targetEntity indicates the entity that stores the primary key—this is normally inferred
from the type of the field or property (Publisher in the preceding example).

We have also supplied the optional @JoinColumn attribute to name the foreign key column
required by the association something other than the default (publisher)—this is not neces-
sary, but it illustrates the use of the annotation.

When a unidirectional one-to-many association is to be formed, it is possible to express
the relationship using a link table. This is achieved by adding the @JoinTable annotation as
shown in Listing 6-17.2

Listing 6-17. A Simple Unidirectional One-to-Many Association with a Join Table

@OneToMany(cascade = ALL)
@JoinTable
public Set<Book> getBooks() {

return books;
}

The @JoinTable annotation provides attributes that allow various aspects of the link table
to be controlled. These attributes are as follows:

name is the name of the join table to be used to represent the association.

catalog is the name of the catalog containing the join table.

schema is the name of the schema containing the join table.

joinColumns is an array of @JoinColumn attributes representing the primary key of the
entity at the “one” end of the association.

inverseJoinColumns is an array of @JoinColumn attributes representing the primary key of
the entity at the “many” end of the association.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS118

2. When a join table is being used, the foreign key relationship is maintained within the join table
itself—it is therefore not appropriate to combine the mappedBy attribute of the @OneToMany annotation
with the use of an @JoinTable annotation.

6935ch06_final.qxd 8/2/06 9:47 PM Page 118

Listing 6-18 shows a fairly typical application of the @JoinTable annotation to specify the
name of the join table and its foreign keys into the associated entities.

Listing 6-18. A Unidirectional One-to-Many Association with a More Fully Specified Join Table

@OneToMany(cascade = ALL)
@JoinTable(

name="PublishedBooks",
joinColumns = { @JoinColumn(name = "publisher_id") },
inverseJoinColumns = @JoinColumn(name = "book_id")

)
public Set<Book> getBooks() {

return books;
}

Mapping a Many-to-Many Association
When a many-to-many association does not involve a first-class entity joining the two sides
of the relationship, a link table must be used to maintain the relationship. This can be gen-
erated automatically, or the details can be established in much the same way as with the
link table described in the “Mapping a Many-to-One or One-to-Many Association” section
of the chapter.

The appropriate annotation is naturally @ManyToMany, and takes the following attributes:

mappedBy is the field that owns the relationship—this is only required if the association is
bidirectional. If an entity provides this attribute, then the other end of the association is
the owner of the association, and the attribute must name a field or property of that entity.

targetEntity is the entity class that is the target of the association. Again, this may be
inferred from the generic or array declaration, and only needs to be specified if this is not
possible.

cascade indicates the cascade behavior of the association, which defaults to none.

fetch indicates the fetch behavior of the association, which defaults to LAZY.

The example maintains a many-to-many association between the Book class and the
Author class. The Book entity owns the association, so its getAuthors() method must be
marked with an appropriate @ManyToMany attribute, as shown in Listing 6-19.

Listing 6-19. The Book Side of the Many-to-Many Association

@ManyToMany(cascade = ALL)
public Set<Author> getAuthors() {

return authors;
}

The Author entity is managed by the Book entity. The link table is not explicitly managed,
so, as shown in Listing 6-20, we mark it with a @ManyToMany annotation and indicate that the
foreign key is managed by the authors attribute of the associated Book entity.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 119

6935ch06_final.qxd 8/2/06 9:47 PM Page 119

Listing 6-20. The Author Side of the Many-to-Many Association

@ManyToMany(mappedBy = "authors")
public Set<Book> getBooks() {

return books;
}

Alternatively, we could specify the link table in full, as in Listing 6-21.

Listing 6-21. Specifying the Link Table in Full Using the Book Entity Annotations

@ManyToMany(cascade = ALL)
@JoinTable(

name="Books_to_Author",
joinColumns={@JoinColumn(name="book_ident")},
inverseJoinColumns={@JoinColumn(name="author_ident")}

)
public Set<Author> getAuthors() {

return authors;
}

Inheritance
The EJB 3 standard and Hibernate both support three approaches to mapping inheritance
hierarchies into the database. These are as follows:

• Single table (SINGLE_TABLE)

• Joined (JOINED)

• Table-per-class (TABLE_PER_CLASS)

Persistent entities that are related by inheritance must be marked up with the
@Inheritance annotation. This takes a single strategy attribute, which is set to one of three
javax.persistence.InheritanceType enumeration values corresponding to these approaches
(shown in brackets in the preceding bulleted list).

The single table approach manages one class for the superclass and all its subtypes.
There are columns for each mapped field or property of the superclass, and for each dis-
tinct field or property of the derived types. When following this strategy, you will need to
ensure that columns are appropriately renamed when any field or property names collide
in the hierarchy.

To determine the appropriate type to instantiate when retrieving entities from the data-
base, an @DiscriminatorColumn annotation should be provided in the root (and only in the
root) of the persistent hierarchy.3 This defines a column containing a value that distinguishes
between each of the types used. The attributes permitted by the @DiscriminatorColumn anno-
tation are as follows:

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS120

3. That is to say, the highest class in the hierarchy that is mapped to the database as an entity should be
annotated in this way.

6935ch06_final.qxd 8/2/06 9:47 PM Page 120

name is the name of the discriminator column.

discriminatorType is the type of value to be stored in the column as selected from the
javax.persistence.DiscriminatorType enumeration of STRING, CHAR, or INTEGER.

columnDefinition is a fragment of DDL defining the column type. Using this is liable
to reduce the portability of your code across databases.

length is the column length of STRING discriminator types. It is ignored for CHAR and
INTEGER types.

All of these (and the annotation itself) are optional, but we recommend supplying at least
the name attribute. If no @DiscriminatorColumn is specified in the hierarchy, a default column
name of DTYPE and type of STRING will be used.

Hibernate will supply an appropriate discriminator value for each of your entities. For
example, if the STRING discriminator type is used, the value this column contains will be the
name of the entity (which defaults to the class name). You can also override this behavior with
specific values using the @DiscriminatorValue annotation. If the discriminator type is INTEGER,
any value provided via the @DiscriminatorValue annotation must be convertible directly into
an integer.

In Listing 6-22, we specify that an INTEGER discriminator type should be stored in the
column named DISCRIMINATOR. Rows representing Book entities will have a value of 1 in
this column, whereas the following mapping in Listing 6-23 requires that rows represent-
ing ComputerBook entities should have a value of 2 in the same column.

Listing 6-22. The Root of the Inheritance Hierarchy Mapped with the SINGLE_TABLE Strategy

@Entity
@Inheritance(strategy = SINGLE_TABLE)
@DiscriminatorColumn(

name="DISCRIMINATOR",
discriminatorType=INTEGER

)
@DiscriminatorValue("1")
public class Book {
...
}

Listing 6-23. A Derived Entity in the Inheritance Hierarchy

@Entity
@DiscriminatorValue("2")
public class ComputerBook extends Book {
...
}

An alternative to the monolithic single table approach is the otherwise similar joined
table approach. Here a discriminator column is used, but the fields of the various derived
types are stored in distinct tables. Other than the differing strategy, this inheritance type is
specified in the same way (as shown in Listing 6-24).

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 121

6935ch06_final.qxd 8/2/06 9:47 PM Page 121

Listing 6-24. The Root of the Inheritance Hierarchy Mapped with the JOINED Strategy

@Entity
@Inheritance(strategy = JOINED)
@DiscriminatorColumn(

name="DISCRIMINATOR"
)
public class Book {
...
}

Finally, there is the table-per-class approach, in which all of the fields of each type in the
inheritance hierarchy are stored in distinct tables. Because of the close correspondence between
the entity and its table, the @DiscriminatorColumn annotation is not applicable to this inheri-
tance strategy. Listing 6-25 shows how our Book class could be mapped in this way.

Listing 6-25. The Root of the Inheritance Hierarchy Mapped with the TABLE_PER_CLASS Strategy

@Entity
@Inheritance(strategy = TABLE_PER_CLASS)
public class Book {
...
}

Other EJB 3 Persistence Annotations
Although we have now covered most of the core EJB 3 persistence annotations, there are a few
others that you will encounter fairly frequently. We cover some of these in passing in the fol-
lowing sections.

Temporal Data
Fields or properties of an entity that have java.util.Date or java.util.Calendar types repre-
sent temporal data. By default, these will be stored in a column with the TIMESTAMP data type,
but this default behavior can be overridden with the @Temporal annotation.

The annotation accepts a single value attribute from the javax.persistence.
TemporalType enumeration. This offers three possible values: DATE, TIME, and TIMESTAMP.
These correspond respectively to java.sql.Date, java.sql.Time, and java.sql.Timestamp.
The table column is given the appropriate data type at schema generation time. Listing 6-26
shows an example mapping a java.util.Date property as a TIME type—the java.sql.Date
and java.sql.Time classes are both derived from the java.util.Date class, so confusingly,
both are capable of representing dates and times!

Listing 6-26. A Date Property Mapped as a Time Temporal Field

@Temporal(TIME)
public java.util.Date getStartingTime() {

return this.startingTime;
}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS122

6935ch06_final.qxd 8/2/06 9:47 PM Page 122

Large Objects
A persistent property or field can be marked for persistence as a database-supported large
object type by applying the @Lob annotation.

The annotation takes no attributes, but the underlying large object type to be used will
be inferred from the type of the field or parameter. String- and character-based types will be
stored in an appropriate character-based type. All other objects will be stored in a BLOB.
Listing 6-27 maps a String into a large object column type.

Listing 6-27. An Example of a Large Object Property

@Lob
public String getTitle() {

return this.title;
}

The @Lob annotation can be used in combination with the @Basic annotation.

Mapped Superclasses
A special case of inheritance occurs when the root of the hierarchy is not itself a persistent
entity, but various classes derived from it are. Such a class can be abstract or concrete. The
@MappedSuperclass annotation allows you to take advantage of this circumstance.

The class marked with @MappedSuperclass is not an entity, and is not queryable (it cannot
be passed to methods that expect an entity in the Session or EntityManager objects). It can-
not be the target of an association.

The mapping information for the columns of the superclass will be stored in the same
table as the details of the derived class (in this way, the annotation resembles the use of the
an @Inheritance tag with the SINGLE_TABLE strategy).

In other respects, the superclass can be mapped as a normal entity, but the mappings will
apply to the derived classes only (since the superclass itself does not have an associated table
in the database). When a derived class needs to deviate from the superclass’s behavior, the
@AttributeOverride annotation can be used (much as with the use of an embeddable entity).

For example, if in our example model Book was a superclass of ComputerBook, but Book
objects themselves were never persisted directly, then Book could be marked as
@MappedSuperclass, as in Listing 6-28.

Listing 6-28. Marking the Book Class As a Mapped Superclass

@Entity
@MappedSuperclass
public class Book {
...
}

The fields of the ComputerBook entity derived from Book would then be stored in the
ComputerBook entity class’s table. Classes derived directly from Book but not mapped as entities
in their own right, such as a hypothetical MarketingBook class, would not be persistable. In this
respect alone, the mapped superclass approach behaves differently from the conventional
@Inheritance approach with a SINGLE_TABLE strategy.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 123

6935ch06_final.qxd 8/2/06 9:47 PM Page 123

Named Queries (HQL or EJB QL)
@NamedQuery and @NamedQueries allow one or more EJB QL queries to be associated with an
entity. The required attributes are as follows:

name is the name by which the query is retrieved.

query is the EJB QL (or HQL) query associated with the name.

Listing 6-29 shows an example associating a named query with the Author entity. The
query would retrieve Author entities by name, so it is natural to associate it with that entity—
however, there is no actual requirement that a named query be associated in this way with the
entity that it concerns.

Listing 6-29. An EJB QL Named Query Annotation

@Entity
@NamedQuery(

name="findAuthorsByName",
query="from Author where name = :author"

)
public class Author {
...
}

There is also a hints attribute, taking a QueryHint annotation name/value pair, which
allows caching mode, timeout value, and a variety of other platform-specific tweaks to be
applied (this can also be used to comment the SQL generated by the query).

You do not need to directly associate the query with the entity against which it is declared,
but it is normal to do so. If a query has no natural association with any of the entity declara-
tions, it is possible to make the @NamedQuery annotation at the package level.

There is no natural place to put a package-level annotation, so Java annotations allow for
a specific file, called package-info.java, to contain them. Listing 6-30 gives an example of this.

Listing 6-30. A package-info.java File

@javax.annotations.NamedQuery(
name="findAuthorsByName",
query="from Author where name = :author"

)
package com.hibernatebook.annotations;

Hibernate’s session allows named queries to be accessed directly, as shown in Listing 6-31.

Listing 6-31. Invoking a Named Query via the Session

Query query = session.getNamedQuery("findAuthorsByName");
query.setParameter("author", "Dave");
List booksByDave = query.list();
System.out.println("There is/are " + booksByDave.size()

+ " author(s) called Dave in the catalog");

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS124

6935ch06_final.qxd 8/2/06 9:47 PM Page 124

If you have multiple @NamedQuery annotations to apply to an entity, they can be provided
as an array of values of the @NamedQueries annotation.

Named Native Queries (SQL)
EJB 3 also allows the database’s native query language (usually a dialect of SQL) to be used in
place of EJB QL. You risk losing portability here if you use a database-specific feature, but as
long as you use reasonably generic SQL, you should be OK. The @NamedNativeQuery annotation
is declared in almost exactly the same manner as the @NamedQuery annotation. The following
block of code shows a simple example of the use of a named native query.

@NamedNativeQuery(
name="nativeFindAuthorNames",
query="select name from author"

)

Multiple @NamedNativeQuery annotations can be grouped with the @NamedNativeQueries
annotation.

■Note Hibernate does not currently fully support named native queries.

Configuring the Annotated Classes
Once you have an annotated class, you will need to provide the class to your application’s
Hibernate configuration, just as if it were an XML mapping. With annotations, you can use
either the declarative configuration in the hibernate.cfg.xml XML configuration document,
or you can programmatically add annotated classes to Hibernate’s org.hibernate.cfg.
AnnotationConfiguration object. Your application may use both annotated entities and
XML mapped entities in the same configuration.

To provide declarative mapping, we use a normal hibernate.cfg.xml XML configuration
file and add the annotated classes to the mapping using the mapping element (see Listing 6-32).
Notice that we have specified the name of the annotated class as a mapping.

Listing 6-32. A Hibernate XML Configuration File with an Annotated Class

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property name="connection.driver_class">
org.hsqldb.jdbcDriver

</property>

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 125

6935ch06_final.qxd 8/2/06 9:47 PM Page 125

<property name="connection.url">
jdbc:hsqldb:file:annotationsdb;shutdown=true

</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>
<property name="hibernate.connection.pool_size">0</property>
<property name="show_sql">false</property>
<property name="dialect">

org.hibernate.dialect.HSQLDialect
</property>

<!-- Mapping files -->
<mapping class="com.hibernatebook.annotations.Author"/>
<mapping class="com.hibernatebook.annotations.AuthorAddress"/>
<mapping class="com.hibernatebook.annotations.Book"/>
<mapping class="com.hibernatebook.annotations.Address"/>
<mapping class="com.hibernatebook.annotations.Publisher"/>
<mapping class="com.hibernatebook.annotations.ComputerBook"/>

</session-factory>
</hibernate-configuration>

You can also add an annotated class to your Hibernate configuration programmatically.
The annotations toolset comes with an org.hibernate.cfg.AnnotationConfiguration object
that extends the base Hibernate Configuration object for adding mappings. The methods on
AnnotationConfiguration for adding annotated classes to the configuration are as follows:

addAnnotatedClass(Class persistentClass) throws MappingException
addAnnotatedClasses(List<Class> classes)
addPackage(String packageName) throws MappingException

Using these methods, you can add one annotated class, a list of annotated classes, or an
entire package (by name) of annotated classes. As with the Hibernate XML configuration file,
the annotated entities are interoperable with XML mapped entities.

Hibernate 3–Specific Persistence Annotations
Table 6-2 lists the Hibernate-specific annotations. We will now look at some of these Hibernate-
specific annotations in more detail—however, bear in mind that using any of this functionality
potentially reduces the portability of your application to other EJB 3 solutions.

Annotations that are not recognized by an EJB 3 environment will be ignored, rather than
causing a runtime exception directly—however, this may result in different runtime applica-
tion behavior that may not be desirable. In some cases, Hibernate 3 annotations can be used
to prepare resources that are referenced by standard EJB 3 annotations, in which case the
application will fail when the EJB 3 environment attempts to use the missing resource.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS126

6935ch06_final.qxd 8/2/06 9:47 PM Page 126

■Tip It is possible to overstate the importance of portability—most bespoke applications are never
deployed to an environment other than the one for which they were originally developed. As a mature prod-
uct, Hibernate 3 has numerous features to offer above and beyond the base EJB 3 specification. You should
not waste too much time trying to achieve a portable solution in preference to these proprietary features
unless you have a definite requirement for portability.

Table 6-2. The Hibernate Annotations

Attribute Name Target Purpose

AccessType T, M, and F Allows the default access type (normally deter-
mined by the placement of the @javax.
persistence.Id annotation) for the annotated
object to be overridden.

BatchSize T, M, and F Allows the batch size for a query to be specified.

Cache T, M, and F Allows a cache concurrency strategy (NONE,
NONSTRICT_READ_WRITE, READ_ONLY, READ_WRITE, or
TRANSACTIONAL) to be selected.

Cascade M and F Applies a Hibernate-specific cascade strategy to an
association.

Check T, M, and F Allows an arbitrary SQL constraint to be specified
during the schema generation.

CollectionOfElements M and F Allows a collection field or an attribute to be
marked as a collection of elements or embedded
objects, rather than a full-fledged association with
an entity.

Columns M and F Allows an array of @javax.persistence.Column
annotations to be applied to an annotated
Hibernate composite user type.

DiscriminatorFormula T Allows the discriminator type to be determined
with an HQL formula instead of the default EJB 3
mechanisms.

Entity T Allows Hibernate-specific attributes to be applied
in addition to the javax.persistence.Entity anno-
tation information.

Filter/Filters T, M, and F Adds named filters to an entity or a collection.

FilterDef/FilterDefs Pk and T Allows named filters to be declared.

Formula MF Allows an SQL formula to be used in place of values
drawn from a column.

GenericGenerator Pk, T, M, and F Allows a Hibernate-specific generator to be used
when creating a primary key value for the entity.

Index M and F Allows a database index to be defined for a column
or columns.

IndexColumn M and F Allows a collection to maintain an order on the
basis of an index column maintaining the element
ordering (i.e., collection ordering rather than data-
base ordering).

Continued

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 127

6935ch06_final.qxd 8/2/06 9:47 PM Page 127

Table 6-2. Continued

Attribute Name Target Purpose

NamedNativeQuery/ Pk and T Extends the corresponding EJB 3 named native
NamedNativeQueries query functionality with various Hibernate-specific

query hints.

NamedQuery/NamedQueries Pk and T Extends the corresponding EJB 3 named query
functionality with various Hibernate-specific query
hints.

NotFound M and F Allows the behavior to be defined for circumstances
in which an expected entity is missing. The options
drawn from the NotFoundAction enumeration are
the self-explanatory EXCEPTION and IGNORE values.
The default is EXCEPTION.

OnDelete T, M, and F Allows Hibernate-specific behavior on deletion of
collections, arrays, and joined subclasses.

OrderBy M and F Allows a collection to be ordered by SQL rather than
HQL (as with the EJB 3 annotation) ordering.

ParamDef Pm Used to define parameters for Filter annotations.

Parameter Pm Used to declare parameters for GenericGenerator
annotations.

Proxy T Allows the proxy behavior for an entity to be config-
ured or disabled.

Sort M and F Allows a collection to be sorted using a comparator.

Table/Tables T Allows indexes to be applied to a table (see the
“Applying Indexes with @Table and @Index” section
later in the chapter).

Type M and F Marks a field or an attribute as being a composite
user type.

TypeDef/TypeDefs Pk and T Allows a composite user type to be defined.

Where T, M, and F Applies a Where clause to an entity or association.

Key to the Target column: Pk = package, T = type, M = method, F = field, Pm = parameter

All the annotations and enumerations described here fall into the org.hibernate.
annotations package. When we refer to an EJB 3 annotation or enumeration, we will use
the fully qualified javax.persistence.* class name.

@Entity
The Hibernate-specific @Entity annotation extends the basic details of the @javax.
persistence.Entity annotation, but is otherwise used in the same contexts. It allows the
following additional attributes to be specified:

dynamicInsert is used to flag that insert statements should be generated at run time (not
at startup), allowing only the altered columns to be inserted. By default this is disabled.

dynamicUpdate is used to flag that update statements should be generated at run time,
allowing only the altered columns to be updated. By default this is disabled.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS128

6935ch06_final.qxd 8/2/06 9:47 PM Page 128

mutable is true by default, but if set to false, it allows the persistence engine to cache the
values read from the database, and the persistence engine will make no attempt to update
them in response to changes (changes that should not be made if this flag is set to false).

optimisticLock allows an optimistic lock strategy to be selected from the
OptimisticLockType enumeration values of ALL, DIRTY, NONE, and VERSION. This defaults
to VERSION.

persister allows a persister class other than the default Hibernate one to be selected for
the entity (for example, allowing serialization to be used instead of relational persistence).

polymorphism allows the polymorphism strategy to be selected from the PolymorphismType
enumeration values of EXPLICIT and IMPLICIT. This defaults to IMPLICIT.

selectBeforeUpdate allows the user to request that a SELECT be performed to retrieve the
entity before any potential update.

Sorting Collections with @Sort
The Hibernate-specific @Sort annotation allows a collection managed by Hibernate to be
sorted by a standard Java comparator. The following code gives an example.

@javac.persistence.OneToMany
@org.hibernate.annotations.Sort(

type=org.hibernate.annotations.SortType.COMPARATOR,
comparator=EmployeeComparator.class

)
public Set<Employee> getEmployees() {

return this.employees;
}

Ordering Collections with @IndexColumn
While @Sort allows data to be sorted once it has been retrieved from the database, Hibernate
also provides a non-standard persistence feature that allows the ordering of appropriate col-
lection types such as List to be maintained within the database by maintaining an index
column to represent that order. Here’s an example:

@javax.persistence.OneToMany
@org.hibernate.annotations.IndexColumn(

name="employeeNumber"
)
public List<Employee> getEmployees() {

return this.employees;
}

Here, we are declaring that an employeeNumber column will maintain a value, starting at 0
and incrementing as each entry is added to the list. The default starting value can be overridden
by the base attribute. By default, the column can contain null (unordered) values. This can be
overridden by setting the nullable attribute to false. By default, when the schema is generated

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 129

6935ch06_final.qxd 8/2/06 9:47 PM Page 129

from the annotations, the column is assumed to be an integer type, but this can be overridden
by supplying a columnDefinition attribute specifying a different column definition string.

Applying Indexes with @Table and @Index
The Hibernate-specific @Table annotation supplements the standard table annotation and
allows additional index hints to be provided to Hibernate. These will be used at schema gener-
ation time to apply indexes to the columns specified. The following code gives an example.

// Standard persistence annotations:
@javax.persistence.Entity
@javax.persistence.Table(name="FOO")

// Hibernate-specific table annotation:
@Table(
appliesTo="FOO", indexes = {

@Index(name="FOO_FROM_TO_IDX",columnNames={"FIRST","LAST"}),
@Index(name="FOO_EMPLOYEE_IDX",columnNames={"EMPLOYEE_NUM"}))

public class Foo {
...
}

Restricting Collections with @Where
The contents of a collection that will be retrieved from the database can be restricted with
a Hibernate-specific @Where annotation. This simply adds a Where clause to the query that
will be used to obtain the entities contained within the collection. Here’s an example:

@javax.persistence.OneToMany
@org.hibernate.annotations.Where(clause="grade > 2")
public Set<Employee> getEmployees() {

return this.employees;
}

Alternative Key Generation Strategies with @GenericGenerator
As mentioned in the “Primary Keys with @Id and @GeneratedValue” section, the full gamut of
Hibernate primary key value generators is not supported by the standard set of annotations.
Hibernate therefore supplies the @GenericGenerator annotation to fill the void.

The attributes that can be supplied to the annotation are as follows:

name is mandatory, and is used to identify the generic generator in the @GeneratedValue
annotation.

strategy is mandatory, and determines the generator type to be used. This can be a stan-
dard Hibernate generator type or the name of a class implementing the org.hibernate.
id.IdentifierGenerator interface.

parameters is a list of @Parameter annotations defining any parameter values required by
the generator strategy.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS130

6935ch06_final.qxd 8/2/06 9:47 PM Page 130

The available standard Hibernate strategies are increment, identity, sequence, hilo,
seqhilo, uuid, guid, native, assigned, select, and foreign. For example, the non-standard
uuid strategy for a primary key is configured as follows:

@Id
@GenericGenerator(name="unique_id",strategy="uuid")
@GeneratedValue(generator="unique_id")
public String getId() {

return this.id;
}

Alternatively, to configure the sequence strategy (equivalent to specifying a strategy of
SEQUENCE in the @GeneratedValue annotation), you can supply the following parameters:

@Id
@GenericGenerator(name="seq_id",strategy="sequence",

parameters= {
@Parameter(name="sequence",value="HIB_SEQ")

}
)
@GeneratedValue(generator="seq_id")
public Integer getId() {

return this.id;
}

Using Ant with Annotation-Based Mappings
When using the Hibernate Ant tasks in conjunction with the annotation-based mappings,
you operate under one important constraint: the Ant task cannot read the mapping infor-
mation from the raw source files. The annotated files must be compiled before you can
perform any operations on them (including schema generation). You should therefore
ensure that any Hibernate Ant tasks are granted a dependency upon the compile task for
the entities.

The Ant task will also need access to the classes via the configuration object—you will
therefore need to explicitly include any annotated classes in the hibernate.cfg.xml file as
described in the first part of the previous “Configuring the Annotated Classes” section. You
cannot use programmatic configuration of the classes in conjunction with tasks such as
hbm2ddl, so this is an important step.

The various Hibernate JAR files, including hibernate-annotations.jar, will need to be in
the classpath of the task definition.

Finally, you will need to specify an <annotationconfiguration .../> element, rather than
the usual <configuration .../> element. An example Ant target to build a DDL script from
annotated classes is shown in Listing 6-33.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 131

6935ch06_final.qxd 8/2/06 9:47 PM Page 131

Listing 6-33. A Sample Excerpt from this Chapter’s Task to Perform Schema Generation

<target name="exportDDL" depends="compile">
<mkdir dir="${sql}"/>
<htools destdir="${sql}">

<classpath refid="classpath.tools"/>
<annotationconfiguration

configurationfile="${src}/hibernate.cfg.xml"/>
<hbm2ddl

create="true"
drop="true"
format="true"
export="true"
outputfilename="${ant.project.name}.dll"/>

</htools>
</target>

A full Ant script is provided with the online source code for this chapter (at www.apress.com).

Code Listings
Listings 6-34 and 6-35 contain the completed annotated source code for the Author and Book
classes described in this chapter. The database schema also follows in Listing 6-36.

Listing 6-34 illustrates use of the @Entity, @Inheritance, @Id, @GeneratedValue, @Column,
@Transient, @ManyToOne, @JoinColumn, and @ManyToMany annotations.

Listing 6-34. The Fully Annotated Book Class

package com.hibernatebook.annotations;

import static javax.persistence.CascadeType.ALL;
import static javax.persistence.InheritanceType.JOINED;

import java.util.*;
import javax.persistence.*;

@Entity
@Inheritance(strategy = JOINED)
public class Book {

private String title;
private Publisher publisher;
private Set<Author> authors = new HashSet<Author>();
private int pages;
private int id;
protected Date publicationDate;

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS132

6935ch06_final.qxd 8/2/06 9:47 PM Page 132

// Constructors...

protected Book() {
}

public Book(String title, int pages) {
this.title = title;
this.pages = pages;

}

// Getters...

@Id
@GeneratedValue
public int getId() {

return id;
}

@Column(name = "working_title", length = 200, nullable = false)
public String getTitle() {

return title;
}

public int getPages() {
return pages;

}

@Transient
public Date getPublicationDate() {

return publicationDate;
}

@ManyToOne
@JoinColumn(name = "publisher_id")
public Publisher getPublisher() {

return publisher;
}

@ManyToMany(cascade = ALL)
public Set<Author> getAuthors() {

return authors;
}

// Setters...

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 133

6935ch06_final.qxd 8/2/06 9:47 PM Page 133

public void setId(int id) {
this.id = id;

}

public void setTitle(String title) {
this.title = title;

}

public void setPages(int pages) {
this.pages = pages;

}

public void setPublicationDate(Date publicationDate) {
this.publicationDate = publicationDate;

}

public void setPublisher(Publisher publisher) {
this.publisher = publisher;

}

public void setAuthors(Set<Author> authors) {
this.authors = authors;

}

// Helpers...
public void addAuthor(Author author) {

authors.add(author);
}

}

Listing 6-35 demonstrates the use of the @NamedQuery, @Embedded, @AttributeOverrides,
and @AttributeOverride annotations.

Listing 6-35. The Fully Annotated Author Class

package com.hibernatebook.annotations;

import java.util.HashSet;
import java.util.Set;

import javax.persistence.*;

@Entity
@NamedQuery(
name="findAuthorsByName",
query="from Author where name = :author"

)
public class Author {

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS134

6935ch06_final.qxd 8/2/06 9:47 PM Page 134

private int id;
private String name;
private Set<Book> books = new HashSet<Book>();
private AuthorAddress address;

// Constructors...

protected Author() {
}

public Author(String name, AuthorAddress address) {
this.name = name;
this.address = address;

}

// Getters...

@Id
@GeneratedValue
public int getId() {

return id;
}

public String getName() {
return name;

}

@ManyToMany(mappedBy = "authors")
public Set<Book> getBooks() {

return books;
}

@Embedded
@AttributeOverrides({

@AttributeOverride(name="address",column=@Column(name="ADDR")),
@AttributeOverride(name="country",column=@Column(name="NATION"))

})
public AuthorAddress getAddress() {

return this.address;
}

// Setters...

public void setId(int id) {
this.id = id;

}

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 135

6935ch06_final.qxd 8/2/06 9:47 PM Page 135

public void setName(String name) {
this.name = name;

}

public void setBooks(Set<Book> books) {
this.books = books;

}

public void setAddress(AuthorAddress address) {
this.address = address;

}
}

Finally, Listing 6-36 shows the database schema for the classes supporting this chapter,
as generated by the Ant hbm2ddl export task for the HSQL database. You will note that we are
unable to control the names selected for the foreign key relationships. This is one area in
which the Hibernate XML mapping files are superior to the EJB 3 annotations.

Listing 6-36. The Database Schema for the Example

create table Address (
id integer not null,
city varchar(255),
country varchar(255),
primary key (id)

);

create table Author (
id integer generated by default as identity (start with 1),
ADDR varchar(255),
NATION varchar(255),
name varchar(255),
primary key (id)

);

create table Book (
id integer generated by default as identity (start with 1),
pages integer not null,
working_title varchar(200) not null,
publisher_id integer,
primary key (id)

);

create table Book_Author (
books_id integer not null,
authors_id integer not null,
primary key (books_id, authors_id)

);

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS136

6935ch06_final.qxd 8/2/06 9:47 PM Page 136

create table ComputerBook (
BOOK_ID integer not null,
softwareName varchar(255),
primary key (BOOK_ID)

);

create table Publisher (
id integer generated by default as identity (start with 1),
name varchar(255),
address_id integer,
primary key (id)

);

alter table Book
add constraint FK1FAF0990BF1C70
foreign key (publisher_id)
references Publisher;

alter table Book_Author
add constraint FK1A9A0FA1B629DD87
foreign key (authors_id)
references Author;

alter table Book_Author
add constraint FK1A9A0FA1D3BA8BC3
foreign key (books_id)
references Book;

alter table ComputerBook
add constraint FK98D97CC4600B1724
foreign key (BOOK_ID)
references Book;

alter table Publisher
add constraint FKCDB7C1DC158ECEF0
foreign key (address_id)
references Address;

Summary
In this chapter, we used EJB 3 annotations to add metadata to our POJOs for Hibernate, and
we looked at the Hibernate-specific annotations that can enhance these at the cost of reduced
portability.

In the next chapter, we discuss the alternative approach of using XML mapping docu-
ments to express the mapping requirements.

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS 137

6935ch06_final.qxd 8/2/06 9:47 PM Page 137

6935ch06_final.qxd 8/2/06 9:47 PM Page 138

Creating Mappings with
Hibernate XML Files

In the simple example programs in Chapters 1 and 3, we demonstrated how a mapping file
could be used to establish the relationship between the object model and the database
schema. A mapping file can map a single class or multiple classes to the database. The map-
ping can also describe standard queries (in HQL and SQL) and filters.

Hibernate Types
Although we have referred to the Hibernate types in passing, we have not discussed the ter-
minology in any depth. In order to express the behavior of the mapping file elements, we
need to make these fine distinctions explicit.

Hibernate types fall into three broad categories: entities, components, and values.

Entities
Generally, an entity is a POJO class that has been mapped into the database using the <class>
or <subclass> elements.

An entity can also be a dynamic map (actually a Map of Maps). These are mapped against
the database in the same way as a POJO, but with the default entity mode of the
SessionFactory set to dynamic-map.

The advantage of POJOs over the dynamic-map approach is that compile-time type safety
is retained. Conversely, dynamic maps are a quick way to get up and running when building
prototypes.

It is also possible to represent your entities as Dom4J Document objects. This is a useful
feature when importing and exporting data from a preexisting Hibernate database, but it is
not really central to the everyday use of Hibernate.

We recommend that you use the standard entity mode unless you need to sacrifice accu-
racy for timeliness, so the alternate approaches are not discussed in this chapter—however,
we give some simple examples of the Dom4J- and Map-based mappings in Appendix A.

139

C H A P T E R 7

■ ■ ■

6935ch07_final.qxd 8/2/06 9:43 PM Page 139

Components
Lying somewhere between entities and values are component types. When the class represen-
tation is simple and its instances have a strong one-to-one relationship with instances of
another class, then it is a good candidate to become a component of that other class.

The component will normally be mapped as columns in the same table that represents
most of the other attributes of the owning class, so the strength of the relationship must justify
this inclusion. In the following code, the MacAddress class might a good candidate for a com-
ponent relationship.

public class NetworkInterface {
public int id;
public String name;
public String manufacturer;
public MacAddress physicalAddress;

}

The advantage of this approach is that it allows you to dispense with the primary key of
the component and the join to its containing table. If a poor choice of component is made
(for example, when a many-to-one relationship actually holds), then data will be duplicated
unnecessarily in the component columns.

Values
Everything that is not an entity or a component is a value. Generally, these correspond to the
data types supported by your database, the collection types, and, optionally, some user-
defined types.

The details of these mappings will be vendor-specific, so Hibernate provides its own value
type names; the Java types are defined in terms of these (see Table 7-1).

Table 7-1. The Standard Hibernate 3 Value Names

Hibernate 3 Type Corresponding Java Type

Primitives and Wrappers

integer int, java.lang.Integer

long long, java.lang.Long

short short, java.lang.Short

float float, java.lang.Float

double double, java.lang.Double

character char, java.lang.Character

byte byte, java.lang.Byte

boolean, yes_no, true_false boolean, java.lang.Boolean

Other Classes

string java.lang.String

date, time, timestamp java.util.Date

calendar, calendar_date java.util.Calendar

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES140

6935ch07_final.qxd 8/2/06 9:43 PM Page 140

Hibernate 3 Type Corresponding Java Type

big_decimal java.math.BigDecimal

big_integer java.math.BigInteger

locale java.util.Locale

timezone java.util.TimeZone

currency java.util.Currency

class java.lang.Class

binary byte[]

text java.lang.String

serializable java.io.Serializable

clob java.sql.Clob

blob java.sql.Blob

In addition to these standard types, you can create your own. Your user type class should
implement either the org.hibernate.usertype.UserType interface or the org.hibernate.
usertype.CompositeUserType interface. Once implemented, a custom type can behave iden-
tically to the standard types; though depending on your requirements, it may be necessary to
specify multiple column names to contain its values, or to provide initialization parameters
for your implementation.

For one-off cases, we recommend that you use components—these have similar behavior,
but they can be “created” in the mapping file without needing to write Hibernate-specific
code. Unless you propose to make substantial use of a custom type throughout your applica-
tion, it will not be worth the effort. We do not discuss this feature further in this book.

The Anatomy of a Mapping File
A mapping file is a normal XML file. It is validated against a DTD, which can be downloaded
from http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd. You can also look
through the annotated version at http://hibernatebook.com.

The terminology used in the naming of elements and attributes is somewhat confusing at
first because it is the point of contact between the jargon of the object-oriented and relational
worlds.

The <hibernate-mapping> Element
The root element of any mapping file is <hibernate-mapping>. As the top-level element, its
attributes mostly define default behaviors and settings to apply to the child elements (see
Table 7-2).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 141

6935ch07_final.qxd 8/2/06 9:43 PM Page 141

Table 7-2. The <hibernate-mapping> Attributes

Attribute Values Default Description

auto-import true, false true By default, allows you to use the unqualified
class names in Hibernate queries. You would
normally only set this to false if the class
name would otherwise be ambiguous.

catalog The database catalog against which queries
should apply.

default-access property The default access type. If set to property, then
get and set methods are used to access the
data. If set to field, then the data is accessed
directly. Alternatively, you can provide the
class name of a PropertyAccessor implementa-
tion defining any other access mechanism.

default-cascade Defines how (and whether) direct changes to
data should affect dependent data by default.

default-lazy true, false true Defines whether lazy instantiation is used by
default. Generally, the performance benefits
are such that you will want to use lazy instanti-
ation whenever possible.

package The package from which all implicit imports
are considered to occur.

schema The database schema against which queries
should apply.

The default cascade modes available for the default-cascade attribute (and for the cas-
cade attributes in all other elements) are as follows:

create, merge, delete, save-update, evict, replicate, lock, refresh

These correspond to the various possible changes in the lifestyle of the parent object.
When set (you can include combinations of them as comma-separated values), the relevant
changes to the parent will be cascaded to the relation. For example, you may want to apply
the save-update cascade option to a class that includes Set attributes, so that when new per-
sistent classes are added to these, they will not have to be saved explicitly in the session.

There are also three special options:

all, delete-orphan, none

all specifies that all changes to the parent should be propagated to the relation, and none
specifies that none should. delete-orphan applies only to one-to-many associations, and speci-
fies that the relation should be deleted when it is no longer referenced by the parent.

The required order and cardinality of the child elements of <hibernate-mapping> are as
follows:

(meta*,
typedef*,
import*,
(class | subclass | joined-subclass | union-subclass)*,
(query | sql-query)*,
filter-def*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES142

6935ch07_final.qxd 8/2/06 9:43 PM Page 142

Throughout this book, we have assumed that the mappings are defined in one mapping
file for each significant class that is to be mapped to the database. We suggest that you follow
this practice in general, but there are some exceptions to this rule. You may, for instance, find
it useful to place query and sql-query entries into an independent mapping file, particularly
when they do not fall clearly into the context of a single class.

The <class> Element
The child element that you will use most often—indeed, in nearly all of your mapping files—is
<class>. As you have seen in earlier chapters, we generally describe the relationships between
Java objects and database entities in the body of the <class> element. The <class> element
permits the following attributes to be defined (see Table 7-3).

Table 7-3. The <class> Attributes

Attribute Values Default Description

abstract true, false false The flag that should be set if the class being
mapped is abstract.

batch-size 1 Specifies the number of items that can be
batched together when retrieving instances of
the class by identifier.

catalog The database catalog against which the
queries should apply.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 143

THE ORDER AND CARDINALITY INFORMATION FROM THE DTD

The mapping files used by Hibernate have a great many elements and are somewhat self-referential. For
example, the <component> element permits you to include within it further <component> elements, and
within those further <component> elements—and so on, ad infinitum.

While we do not quote exhaustively from the mapping file’s DTD, we sometimes quote the part of it
that specifies the permitted ordering and cardinality (number of occurrences) of the child elements of a
given element.

The cardinality is expressed by a symbol after the end of the name of the element: * means “zero
or more occurrences,” ? means “zero or one occurrences,” and no trailing symbol means “exactly one
occurrence.”

The elements can be grouped using brackets, and where the elements are interchangeable, | (the pipe
symbol) means “or.”

In practical terms, this allows us to tell from the order and cardinality information quoted for the
hibernate-mapping file that all of the elements immediately below it are, in fact, optional. We can also
see that there is no limit to the number of <class> elements that can be included.

You can look up this ordering and cardinality information in the DTD for the mapping file for all the
elements, including the ones that we have omitted from this chapter. You will also find within the DTD the
specification of which attributes are permitted to each element, the values they may take (when they are
constrained), and their default values when provided. We recommend that you look at the DTD for enlight-
enment whenever you are trying to work out whether a specific mapping file should be syntactically valid.

6935ch07_final.qxd 8/2/06 9:43 PM Page 143

Table 7-3. Continued

Attribute Values Default Description

check Defines an additional row-level check
constraint, effectively adding this as a
SQL CHECK(...) clause during table
generation (for example,
check="salary < 1000000").

discriminator-value A value used to distinguish between oth-
erwise identical subclasses of a common
type persisted to the same table. is null
and is not null are permissible values.
To distinguish between a Cat and a Dog
derivative of the Mammal abstract class,
for example, you might use discrimina-
tor values of C and D, respectively.

dynamic-insert true, false false Indicates whether all columns should
appear in INSERT statements. If the
attribute is set to true, null columns will
not appear in generated INSERT com-
mands. On very wide tables, this may
improve performance; but because
insert statements are cached,
dynamic-insert can easily produce a
performance hit.

dynamic-update true, false false Indicates whether all columns should
appear in UPDATE statements. If the
attribute is set to true, unchanged
columns will not appear in generated
UPDATE commands. As with dynamic-
insert, this can be tweaked for perform-
ance reasons. You must enable
dynamic-update if you want to use ver-
sion-based optimistic locking (discussed
in Appendix A).

entity-name The name of the entity to use in place of
the class name (therefore required if
dynamic mapping is used).

lazy true, false Used to disable or enable lazy fetching
against the enclosing mapping’s default.

mutable true, false true Used to flag that a class is immutable
(allowing Hibernate to make some per-
formance optimizations when dealing
with these classes).

name The fully qualified Java name, or
optionally unqualified if the <hibernate-
mapping> element declares a package
attribute, of the class (or interface) that
is to be made persistent.

node Specifies the name of the XML element
or attribute that should be used by the
XML relational persistence features.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES144

6935ch07_final.qxd 8/2/06 9:43 PM Page 144

Attribute Values Default Description

optimistic-lock none, version version Specifies the optimistic locking dirty,
all strategy to use. The strategy applies
at a class level, but in Hibernate 3 can
also be specified (or overridden) at an
attribute level. Optimistic locking is dis-
cussed in Appendix A.

persister Allows a custom ClassPersister object
to be used when persisting the entity.

polymorphism implicit, explicit implicit Determines how polymorphism is to be
used. The default implicit behavior will
return instances of the class if super-
classes or implemented interfaces are
named in the query, and will return
subclasses if the class itself is named in
the query.

proxy Specifies a class or an interface to use as
the proxy for lazy initialization. Hiber-
nate uses runtime-generated proxies by
default, but you can specify your own
implementation of org.hibernate.
HibernateProxy in their place.

rowid Flags that row IDs should be used (a
database-implementation detail allow-
ing Hibernate to optimize updates).

schema Optionally overrides the schema speci-
fied by the <hibernate-mapping> element.

select-before- true, false false Flags that Hibernate should carry out
update extra work to avoid issuing unnecessary

UPDATE statements. If set to true, Hiber-
nate issues a SELECT statement before
attempting to issue an UPDATE statement
in order to ensure that the UPDATE state-
ment is actually required (i.e., that col-
umns have been modified). While this is
likely to be less efficient, it can prevent
database triggers from being invoked
unnecessarily.

subselect A subselection of the contents of the
underlying table. A class can only use
a subselect if it is immutable and read-
only (because the SQL defined here can-
not be reversed). Generally, the use of a
database view is preferable.

table The table name associated with the class
(if unspecified, the unqualified class
name will be used).

where An arbitrary SQL where condition to be
used when retrieving objects of this class
from the table.

Many of these attributes in the <class> element are designed to support preexisting data-
base schemas. In practice, the name attribute is very often the only one set.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 145

6935ch07_final.qxd 8/2/06 9:43 PM Page 145

The required order and cardinality of the child elements of <class> are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
tuplizer*,
(id | composite-id),
discriminator?,
(version | timestamp)?,
(property | many-to-one | one-to-one | component | dynamic-component |
properties | any | map | set | list | bag | idbag |
array | primitive-array)*,
((join*, subclass*) | joined-subclass* | union-subclass*),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
filter*
resultset,
(query | sql-query)
)

The <id> Element
All entities need to define their primary key in some way. Any class directly defined by the
<class> element (not a derived or component class) must therefore have an <id> or a
<composite-id> element to define this (see Table 7-4). Note that while it is not a requirement
that your class implementation itself should implement the primary key attribute, it is cer-
tainly advisable. If you cannot alter your class design to accommodate this, you can instead
use the getIdentifier() method on the Session object to determine the identifier of a per-
sistent class independently.

Table 7-4. The <id> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used. The value from
the <hibernate-mapping> element will be inherited if
this is not specified.

column The name of the column in the table containing the
primary key. The value given in the name attribute
will be used if this is not specified.

length The column length to be used.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES146

6935ch07_final.qxd 8/2/06 9:43 PM Page 146

Attribute Values Default Description

name The name of the attribute in the class representing
this primary key. If this is omitted, it is assumed that
the class does not have an attribute directly repre-
senting this primary key. Naturally, the column attrib-
ute must be provided if the name attribute is omitted.

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

type The Hibernate type of the column.

unsaved-value The value that the attribute should take when an
instance of the class has been created but not yet per-
sisted to the database. This attribute is mandatory.

The <id> element requires a <generator> element to be specified, which defines how to
generate a new primary key for a new instance of the class. The generator takes a class attri-
bute, which defines the mechanism to be used. The class should be an implementation of
org.hibernate.id.IdentifierGenerator. Optional <param> elements can be provided if the
identifier needs additional configuration information, each having the following form:

<param name="parameter name">parameter value</param>

Hibernate provides several default IdentifierGenerator implementations, which can be
referenced by convenient short names, as shown in Table 7-5. These are fairly comprehensive,
so you are unlikely to need to implement your own IdentifierGenerator.

Table 7-5. The Default IdentiferGenerator Implementations

Short Name Description

guid Uses a database-generated “globally” unique identifier. This is not portable to
databases that do not have a guid type. The specific implementation, and hence
the quality of the uniqueness of this key, may vary from vendor to vendor.

hilo Uses a database table and column to efficiently and portably maintain and gen-
erate identifiers that are unique to that database. The Hibernate int, short, and
long types are supported.

identity Supports the identity column type available in some, but not all, databases. This
is therefore not a fully portable option. The Hibernate int, short, and long types
are supported.

increment Generates a suitable key by adding 1 to the current highest key value. Can apply
to int, short, or long hibernate types. This only works if other processes are not
permitted to update the table at the same time. If multiple processes are run-
ning, then depending on the constraints enforced by the database, the result
may be an error in the application(s) or data corruption.

native Selects one of sequence, identity, or hilo, as appropriate. This is a good com-
promise option since it uses the innate features of the database and is portable
to most platforms. This is particularly appropriate if your code is likely to be
deployed to a number of database implementations with differing capabilities.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 147

6935ch07_final.qxd 8/2/06 9:43 PM Page 147

Table 7-5. Continued

Short Name Description

seqhilo Uses a sequence to efficiently generate identifiers that are unique to that data-
base. The Hibernate int, short, and long types are supported. This is not a
portable technique (see sequence, following).

sequence Supports the sequence column type (essentially a database-enforced increment)
available in some, but not all, databases. This is, therefore, not a fully portable
option. The Hibernate int, short, and long types are supported.

uuid Attempts to portably generate a (cross-database) unique primary key. The key is
composed of the local IP address, the startup time of the JVM (accurate to 1⁄4 of a
second), the system time, and a counter value (unique within the JVM). This can-
not guarantee absolutely that a given key is unique, but it will be good enough
for most clustering purposes.

The child elements of the <id> element are as follows:

(meta*, column*, type?, generator?)

While this is all rather complex, Listing 7-1 shows a typical <id> element from Chapter 3,
which illustrates the simplicity of the usual case.

Listing 7-1. A Typical <id> Element

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

■Note When the <id> element cannot be defined, a compound key can instead be defined using the
<composite-id> element. This is provided purely to support existing database schemas. A new Hibernate
project with a clean database design does not require this.

In addition to using the standard and custom generator types, you have the option of
using the special assigned generator type. This allows you to explicitly set the identifier for
the entities that you will be persisting—Hibernate will not then attempt to assign any iden-
tifier value to such an entity. If you use this technique, you will not be able to use the
saveOrUpdate() method on a transient entity—instead, you will have to call the appropriate
save() or update() method explicitly.

The <property> Element
While it is not absolutely essential, almost all classes will also maintain a set of properties in
the database in addition to the primary key. These must be defined by a <property> element
(see Table 7-6).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES148

6935ch07_final.qxd 8/2/06 9:43 PM Page 148

Table 7-6. The <property> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used. The value from
the <class> element or <hibernate-mapping> element
will be inherited if this is not specified.

column The column in which the property will be main-
tained. If omitted, this will default to the name of the
attribute; or it can be specified with nested <column>
elements (see Listing 7-2).

formula An arbitrary SQL query representing a computed
property (i.e., one that is calculated dynamically,
rather than represented in a column).

index The name of an index to be maintained for the
column.

insert true, false true Specifies whether creation of an instance of the class
should result in the column associated with this
attribute being included in insert statements.

lazy true, false false Defines whether lazy instantiation is used by default
for this column.

length The column length to be used.

name The (mandatory) name of the attribute. This should
start with a lowercase letter.

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

not-null true, false false Specifies whether the column is permitted to contain
null values.

optimistic-lock true, false true Determines whether optimistic locking should be
used when the attribute has been updated.

precision Allows the precision (the number of digits) to be
specified for numeric data.

scale Allows the scale (the number of digits to the right of
the decimal point) to be specified for numeric data.

type The Hibernate type of the column.

unique true, false false Indicates whether duplicate values are permitted for
this column/attribute.

unique-key Groups the columns together by this attribute value.
Represents columns across which a unique key con-
straint should be generated (not yet supported in the
schema generation).

update true, false true Specifies whether changes to this attribute in
instances of the class should result in the column
associated with this attribute being included in
update statements.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 149

6935ch07_final.qxd 8/2/06 9:43 PM Page 149

The child elements of the <property> element are as follows:

(meta*, (column | formula)*, type?)

Any element accepting a column attribute, as is the case for the <property> element, will
also accept <column> elements in its place. For an example, see Listing 7-2.

Listing 7-2. Using the <column> Element

<property name="message"/>
<column name="message" type="string"/>

</property>

This particular example does not really give us anything beyond the use of the column
attribute directly; but the <column> element comes into its own with custom types and some
of the more complex mappings that we will be looking into later in the chapter.

The <component> Element
The <component> element is used to map classes that will be represented as extra columns
within a table describing some other class. We have already discussed how components fit
in as a compromise between full entity types and mere value types.

The <component> element can take the attributes listed in Table 7-7.

Table 7-7. The <component> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used

class The class that the parent class incorporates by
composition

insert true, false true Specifies whether creation of an instance of the class
should result in the column associated with this
attribute being included in insert statements

lazy true, false false Defines whether lazy instantiation is used by default
for this mapped entity

name The name of the attribute (component) to be
persisted

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features

optimistic-lock true, false true Specifies the optimistic locking strategy to use

unique true, false false Indicates that the values that represent the compo-
nent must be unique within the table

update true, false true Specifies whether changes to this attribute in
instances of the class should result in the column
associated with this attribute being included in
update statements

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES150

6935ch07_final.qxd 8/2/06 9:43 PM Page 150

The child elements of the <component> element are as follows:

(meta*,
tuplizer*,
parent?,
(property | many-to-one | one-to-one |
component | dynamic-component | any |
map | set | list | bag |
array | primitive-array)*)

We provide a full example of the use of the <component> element in the “Mapping Compo-
sition” section later in this chapter.

The <one-to-one> Element
The <one-to-one> element expresses the relationship between two classes, where each instance
of the first class is related to a single instance of the second, and vice versa. Such a one-to-one
relationship can be expressed either by giving each of the respective tables the same primary
key values, or by using a foreign key constraint from one table onto a unique identifier column
of the other. Table 7-8 shows the attributes that apply to the <one-to-one> element.

Table 7-8. The <one-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed:
field for direct field access or attribute for access
via the get and set methods.

cascade Determines how changes to the parent entity will
affect the linked relation.

check The SQL to create a multirow check constraint for
schema generation.

class The property type of the attribute or field (if omit-
ted, this will be determined by reflection).

constrained true, false Indicates that a foreign key constraint on the primary
key of this class references the table of the associated
class.

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity itself,
or only its identifier, will appear in the generated
XML tree.

entity-name The entity name of the associated class.

fetch join, select The mode in which the element will be retrieved
(outer join, a series of selects, or a series of subse-
lects). Only one member of the enclosing class can
be retrieved by outer join.

foreign-key The name to assign to the foreign key enforcing the
relationship.

formula Allows the value to which the associated class maps
its foreign key to be overridden using an SQL formula.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 151

6935ch07_final.qxd 8/2/06 9:43 PM Page 151

Table 7-8. Continued

Attribute Values Default Description

lazy true, false Overrides the entity-loading mode.

name Assigns a name to the entity (required in dynamic
mappings).

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

outer join true, false, Specifies whether an outer join should be used.
auto

property-ref Specifies the column in the target entity’s table that
the foreign key references. If the referenced table’s
foreign key does not reference the primary key of the
“many” end of the relationship, then property-ref
can be used to specify the column that it references.
This should only be the case for legacy designs—
when creating a new schema, your foreign keys
should always reference the primary key of the
related table.

You would select a primary key association when you do not want an additional table
column to relate the two entities. The master of the two entities takes a normal primary key
generator, and its one-to-one mapping entry will typically have the attribute name and asso-
ciated class specified only. The slave entity will be mapped similarly, but must have the
constrained attribute setting applied to ensure that the relationship is recognized.

Because the slave class’s primary key must be identical to that allocated to the master, it is
given the special id generator type of foreign. On the slave end, the <id> and <one-to-one>
elements will therefore look like this:

<id name="id" column="product">
<generator class="foreign">

<param name="property">campaign</param>
</generator>

</id>

<one-to-one name="campaign"
class="com.hibernatebook.xmlmapping.Campaign"
constrained="true"/>

There are some limitations to this approach: it cannot be used on the receiving end of
a many-to-one relationship (even when the “many” end of the association is limited by a
unique constraint), and the slave entity cannot be the slave of more than one entity.

In these circumstances, you will need to declare the master end of the association as a
uniquely constrained one-to-many association. The slave entity’s table will then need to take
a foreign key column associating it with the master’s primary key. The property-ref attribute
setting is used to declare this relationship, like so:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES152

6935ch07_final.qxd 8/2/06 9:43 PM Page 152

<one-to-one
name="campaign"
class="com.hibernatebook.xmlmapping.Campaign"
property-ref="product"/>

The format used in this example is the most common. The body of the element consists
of an infrequently used optional element:

(meta* | formula*)

We discuss the <many-to-many> element and the alternative approach of composition in
some detail in the “Mapping Collections” section later in this chapter.

The <many-to-one> Element
The many-to-one association describes the relationship in which multiple instances of one
class can reference a single instance of another class. This enforces a relational rule for which
the “many” class has a foreign key into the (usually primary) unique key of the “one” class.
Table 7-9 shows the attributes permissible for the <many-to-one> element.

Table 7-9. The <many-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed:
field for direct field access, or attribute for access
via the get and set methods.

cascade Determines how changes to the parent entity will
affect the linked relation.

class The property type of the attribute or field (if omitted,
this will be determined by reflection).

column The column containing the identifier of the target
entity (i.e., the foreign key from this entity into the
mapped one).

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity itself,
or only its identifier, will appear in the generated
XML tree.

entity-name The name of the associated entity.

fetch join, select The mode in which the element will be retrieved
(outer join, a series of selects, or a series of
subselects). Only one member of the enclosing class
can be retrieved by outer join.

foreign-key The name of the foreign key constraint to generate
for this association.

formula An arbitrary SQL expression to use in place of the nor-
mal primary key relationship between the entities.

index The name of the index to be applied to the foreign
key column in the parent table representing the
“many” side of the association.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 153

6935ch07_final.qxd 8/2/06 9:43 PM Page 153

Table 7-9. Continued

Attribute Values Default Description

insert true, false true Indicates whether the field can be persisted.
When set to false, this prevents inserts if the
field has already been mapped as part of a
composite identifier or some other attribute.

lazy false, proxy, Overrides the entity-loading mode.
noproxy

name The (mandatory) name of the attribute. This
should start with a lowercase letter.

node Specifies the name of the XML element or attrib-
ute that should be used by the XML relational
persistence features.

not-found exception, exception The behavior to exhibit if the related entity does
ignore not exist (either throw an exception or ignore the

problem).

not-null true, false false Specifies whether a not-null constraint should
be applied to this column.

optimistic-lock true, false true Specifies whether optimistic locking should be
used.

outer-join true, false, Specifies whether an outer join should be used.
auto

property-ref Specifies the column in the target entity’s table
that the foreign key references. If the referenced
table’s foreign key does not reference the pri-
mary key of the “many” end of the relationship,
then property-ref can be used to specify the col-
umn that it references. This should only be the
case for legacy designs—when creating a new
schema, your foreign keys should always refer-
ence the primary key of the related table.

unique true, false false Specifies whether a unique constraint should be
applied to the column.

unique-key Groups the columns together by this attribute
value. Represents columns across which a
unique key constraint should be generated (not
yet supported in the schema generation).

update true, false true When set to false, prevents updates if the field
has already been mapped elsewhere.

If a unique constraint is specified on a many-to-one relationship, it is effectively converted
into a one-to-one relationship. This approach is preferred over creating a one-to-one association,
both because it results in a simpler mapping and because it requires less intrusive changes to the
database should it become desirable to relax the one-to-one association into a many-to-one.

This element has a small number of optional daughter elements—the <column> element
will be required when a composite key has to be specified:

(meta*, (column | formula)*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES154

6935ch07_final.qxd 8/2/06 9:43 PM Page 154

The following mapping illustrates the creation of a simple many-to-one association
between a User class and an Email class: each user can have only one e-mail address—but
an e-mail address can belong to more than one user.

<many-to-one
name="email"
class="com.hibernatebook.xmlmapping.Email"
column="email"
cascade="all" unique="true"/>

The simplest approach to creating a many-to-one relationship, as shown in the previous
example, requires two tables and a foreign key dependency. An alternative is to use a link table
to combine the two entities. The link table contains the appropriate foreign keys referencing
the two tables associated with both of the entities in the association. The following code shows
the mapping of a many-to-one relationship via a link table.

<join table="link_email_user" inverse="true" optional="false">
<key column="user_id"/>
<many-to-one name="email" column="email_id" not-null="true"/>

</join>

The disadvantage of the link table approach is its slightly poorer performance (it requires
a join of three tables to retrieve the associations, rather than one). Its benefit is that it requires
less extreme changes to the schema if the relationship is modified—typically, changes would
be made to the link table, rather than to one of the entity tables.

The Collection Elements
These are the elements that are required for you to include an attribute in your class that rep-
resents any of the collection classes. For example, if you have an attribute of type Set, then you
will need to use a <bag> or <set> element to represent its relationship with the database.

Because of the simplicity of the object-oriented relationship involved, where one object
has an attribute capable of containing many objects, it is a common fallacy to assume that the
relationship must be expressed as a one-to-many. In practice, however, this will almost always
be easiest to express as a many-to-many relationship, where an additional link table closely
corresponds with the role of the collection itself. See the “Mapping Collections” section later
in this chapter for a more detailed illustration of this.

All the collection mapping elements share the attributes shown in Table 7-10.

Table 7-10. The Attributes Common to the Collection Elements

Attribute Values Default Description

access Specifies how the class member should be
accessed: field for direct field access or
attribute for access via the get and set methods.

batch-size Specifies the number of items that can be
batched together when retrieving instances of
the class by identifier.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 155

6935ch07_final.qxd 8/2/06 9:43 PM Page 155

Table 7-10. Continued

Attribute Values Default Description

cascade Determines how changes to the parent entity
will affect the linked relation.

catalog The database catalog against which the queries
should apply.

collection-type The name of a UserCollectionType class describ-
ing the collection type to be used in place of the
defaults.

check The SQL to create a multirow check constraint
for schema generation.

embed-xml true, false When using XML relational persistence, indi-
cates whether the XML tree for the associated
entity itself, or only its identifier, will appear in
the generated XML tree.

fetch join, select The mode in which the element will be retrieved
(outer-join, a series of selects, or a series of
subselects). Only one member of the enclosing
class can be retrieved by outer-join.

lazy true, false Can be used to disable or enable lazy fetching
against the enclosing mapping’s default.

mutable true, false true Can be used to flag that a class is mutable (allow-
ing Hibernate to make some performance opti-
mizations when dealing with these classes).

name The (mandatory) name of the attribute. This
should start with a lowercase letter.

node Specifies the name of the XML element or attrib-
ute that should be used by the XML relational
persistence features.

optimistic-lock true, false true Specifies the optimistic locking strategy to use.

outer-join true, false, Specifies whether an outer join should be used.
auto

persister Allows a custom ClassPersister object to be
used when persisting this class.

schema The database schema against which queries
should apply.

subselect A query to enforce a subselection of the
contents of the underlying table. A class can
only use a subselect if it is immutable and read-
only (because the SQL defined here cannot be
reversed). Generally, the use of a database view
is preferable.

table The name of the table in which the associated
entity is stored.

where An arbitrary SQL where clause limiting the linked
entities.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES156

6935ch07_final.qxd 8/2/06 9:43 PM Page 156

The set Collection
A set collection allows collection attributes derived from the Set interface to be persisted.

In addition to the common collection mappings, the <set> element offers the inverse,
order-by, and sort attributes, as shown in Table 7-11.

Table 7-11. The Additional <set> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping.

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates
the set collection.

sort Specifies the collection class sorting to be used. The
value can be unsorted, natural, or any Comparator
class.

The child elements of the <set> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

The following code shows an implementation of mapping a set of strings into a property
called titles:

<set name="titles" table="nameset">
<key column="titleid"/>
<element type="string" column="name" not-null="true"/>

</set>

A typical implementation, however, maps other entities into the collection. Here we map
Phone entities from the “many” side of a one-to-many association into a Set property, called
phoneNumbers, that belongs to a User entity:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 157

6935ch07_final.qxd 8/2/06 9:43 PM Page 157

<set name="phoneNumbers">
<key column="aduser"/>
<one-to-many class="sample.Phone"/>

</set>

If the Phone class contains a reference to a User object, it is not automatically clear whether
this constitutes a pair of unrelated associations or two halves of the same association—a
bidirectional association. When a bidirectional association is to be established, one side must
be selected as the owner (in a one-to-many or many-to-one association, it must always be the
“many” side), and the other will be marked as being the inverse half of the relationship. See the
discussion of unidirectional and bidirectional associations at the end of Chapter 4. The follow-
ing code shows a mapping of a one-to-many relationship as a reverse association.

<set name="phoneNumbers" inverse="true">
<key column="aduser"/>
<one-to-many class="sample.Phone"/>

</set>

The list Collection
A list collection allows collection attributes derived from the List interface to be persisted.

In addition to the common collection mappings, the <list> element offers the inverse
attribute, as shown in Table 7-12.

Table 7-12. The Additional <list> Attribute

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping

The child elements of the <list> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(index | list-index),
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES158

6935ch07_final.qxd 8/2/06 9:43 PM Page 158

A typical implementation of a list mapping is as follows:

<list name="list" table="namelist">
<key column="fooid"/>
<index column="position"/>
<element type="string" column="name" not-null="true"/>

</list>

The idbag Collection
An idbag collection allows for appropriate use of collection attributes derived from the List
interface. A bag data structure permits unordered storage of unordered items, and permits
duplicates. Because the collection classes do not provide a native bag implementation, classes
derived from the List interface tend to be used as a substitute. The imposition of ordering
imposed by a list is not itself a problem, but the implementation code can become depend-
ent upon the ordering information.

idbag usually maps to a List. However, by managing its database representation with
a surrogate key, you can make the performance of updates and deletions of items in a col-
lection defined with idbag dramatically better than with an unkeyed bag (described at the
end of this section). Hibernate does not provide a mechanism for obtaining the identifier
of a row in the bag.

In addition to the common collection mappings, the <idbag> element offers the order-by
element, as shown in Table 7-13.

Table 7-13. The Additional <idbag> Attribute

Attribute Values Default Description

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
collection

The child elements of the <idbag> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
collection-id,
key,
(element | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 159

6935ch07_final.qxd 8/2/06 9:43 PM Page 159

A typical implementation of an idbag mapping is as follows:

<idbag name="idbag" table="nameidbag">
<collection-id column="id" type="int">

<generator class="native"/>
</collection-id>

<key column="fooid"/>
<element type="string" column="name" not-null="true"/>

</idbag>

The map Collection
A map collection allows collection attributes derived from the Map interface to be persisted.

In addition to the common collection mappings, the <map> element offers the inverse,
order-by, and sort attributes, as shown in Table 7-14.

Table 7-14. The Additional <map> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end
of a relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates
the map

sort unsorted Specifies the collection class sorting to be used. The
value can be unsorted, natural, or any Comparator
class

The child elements of the <map> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(map-key | composite-map-key | map-key-many-to-many |
index | composite-index | index-many-to-many |
index-many-to-any),
(element | one-to-many | many-to-many | composite-element |
many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES160

6935ch07_final.qxd 8/2/06 9:43 PM Page 160

A typical implementation of the mapping is as follows:

<map name="map" table="namemap">
<key column="fooid"/>
<index column="name" type="string"/>
<element column="value" type="string" not-null="true"/>

</map>

The bag Collection
If your class represents data using a class derived from the List interface, but you do not want
to maintain an index column to keep track of the order of items, you can optionally use the
bag collection mapping to achieve this. The order in which the items are stored and retrieved
from a bag is completely ignored.

Although the bag’s table does not contain enough information to determine the order of
its contents prior to persistence into the table, it is possible to apply an order by clause to the
SQL used to obtain the contents of the bag so that it has a natural sorted order as it is acquired.
This will not be honored at other times during the lifetime of the object.

If the <bag> elements lack a proper key, there will be a performance impact that will mani-
fest itself when update or delete operations are performed on the contents of the bag.

In addition to the common collection mappings, the <bag> element therefore offers the
order-by as well as the inverse attribute, as shown in Table 7-15.

Table 7-15. The Additional <bag> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
collection

The child elements of the <bag> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 161

6935ch07_final.qxd 8/2/06 9:43 PM Page 161

A typical implementation of a bag mapping is as follows:

<bag name="bag" table="namebag">
<key column="fooid"/>
<element column="value" type="string" not-null="true"/>

</bag>

Mapping Simple Classes
Figure 7-1 shows the class diagram and entity relationship diagram for a simple class. They are
as straightforward as you would expect.

The elements discussed so far are sufficient to map a basic class into a single table, as
shown in Listing 7-3.

Listing 7-3. A Simple Class to Represent a User

package com.hibernatebook.xmlmapping;

public class User {

public User(String username) {
this.username = username;

}

User() {
}

public int getId() {
return id;

}

public String getUsername() {
return username;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES162

Figure 7-1. Representing a simple class

6935ch07_final.qxd 8/2/06 9:43 PM Page 162

public void setId(int id) {
this.id = id;

}

public void setUsername(String username) {
this.username = username;

}

// We will map the id to the table's primary key
private int id = -1;

// We will map the username into a column in the table
private String username;

}

It’s pretty easy to see that we might want to represent the class in Listing 7-3 in a table
with the format shown in Table 7-16.

Table 7-16. Mapping a Simple Class to a Simple Table

Column Type

Id Integer

Username Varchar(32)

The mapping between the two is, thus, similarly straightforward:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="book.hibernatebook.chapter06.User">

<id name="id" type="int">
<generator class="native"/>

</id>

<property name="username" type="string" length="32"/>

</class>
</hibernate-mapping>

Aside from the very limited number of properties maintained by the class, this is a pretty
common mapping type, so it is reassuring to see that it can be managed with a minimal
number of elements (<hibernate-mapping>, <class>, <id>, <generator>, and <property>).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 163

6935ch07_final.qxd 8/2/06 9:43 PM Page 163

Mapping Composition
Figure 7-2 shows the class diagram and the entity relationship diagram for a composition rela-
tionship between two classes. Here, the Advert class is composed of a Picture class in addition
to its normal value types.

Composition is the strongest form of aggregation—in which the life cycle of each object
is dependent upon the life cycle of the whole. Although Java does not make the distinction
between other types of aggregation and composition, it becomes relevant when we choose to
store the components in the database, because the most efficient and natural way to do this
is to store them in the same table.

In our example, we will look at an Advert class that has this relationship with a Picture
class. The idea is that our advert is always going to be associated with an illustration (see
Listings 7-4 and 7-5). In these circumstances, there is a clear one-to-one relationship that
could be represented between two distinct tables, but which is more efficiently represented
with one.

Listing 7-4. The Class Representing the Illustration

package com.hibernatebook.xmlmapping;

public class Picture {
public Picture(String caption, String filename) {

this.caption = caption;
this.filename = filename;

}

Picture() {
}

public String getCaption() {
return this.caption;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES164

Figure 7-2. Representing composition

6935ch07_final.qxd 8/2/06 9:43 PM Page 164

public String getFilename() {
return this.filename;

}

public void setCaption(String title) {
this.caption = title;

}

public void setFilename(String filename) {
this.filename = filename;

}

private String caption;
private String filename;

}

Listing 7-5. The Class Representing the Advert

package com.hibernatebook.xmlmapping;

public class Advert {
public Advert(String title, String content, Picture picture) {

this.title = title;
this.content = content;
this.picture = picture;

}

Advert() {
}

public int getId() {
return id;

}

public String getTitle() {
return this.title;

}

public String getContent() {
return this.content;

}

public Picture getPicture() {
return this.picture;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 165

6935ch07_final.qxd 8/2/06 9:43 PM Page 165

public void setId(int id) {
this.id = id;

}

public void setTitle(String title) {
this.title = title;

}

public void setContent(String content) {
this.content = content;

}

public void setPicture(Picture picture) {
this.picture = picture;

}

private int id = -1;
private String title;
private String content;
private Picture picture;

}

Again, Hibernate manages to express this simple relationship with a correspondingly sim-
ple mapping file. We introduce the component entity for this association. Here it is in use:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
<id name="id" type="int">

<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>
<property name="content" type="text"/>
<component name="picture" class="com.hibernatebook.xmlmapping.Picture">

<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>

</component>
</class>

In this example, we use the <property> element to describe the relationship between
Picture and its attributes. In fact, this is true of all of the rest of the elements of <class>—
a <component> element can even contain more <component> elements. Of course, this makes
perfect sense, since a component usually corresponds with a Java class.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES166

6935ch07_final.qxd 8/2/06 9:43 PM Page 166

Mapping Other Associations
In Figure 7-3, the Advert class includes an instance of a Picture class. The relationship in the
tables is represented with the Picture table having a foreign key onto the Advert table.

A one-to-one correspondence does not absolutely require you to incorporate both parties
into the same table. There are often good reasons not to. For instance, in the Picture example,
it is entirely possible that while the initial implementation will permit only one Picture per
Advert, a future implementation will relax this relationship. Consider this scenario from the
perspective of the database for a moment (see Table 7-17).

Table 7-17. The Advert Table

ID Title Contents PictureCaption PictureFilename

1 Bike Bicycle for sale My bike (you can ride it if you like) advert001.jpg

2 Sofa Sofa, comfy but used Chesterfield sofa advert002.jpg

3 Car Shabby MGF for sale MGF VVC (BRG) advert003.jpg

If we want to allow the advert for the sofa to include another picture, we would have to
duplicate some of the data, or include null columns. It would probably be preferable to set up
a pair of tables: one to represent the adverts, and one to represent the distinct tables (as
shown in Tables 7-18 and 7-19).

Table 7-18. The Refined Advert Table

ID Title Contents

1 Bike Bicycle for sale

2 Sofa Sofa, comfy but used

3 Car Shabby MGF for sale

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 167

Figure 7-3. Mapping an aggregation or composition relationship

6935ch07_final.qxd 8/2/06 9:43 PM Page 167

Table 7-19. The Picture Table

ID Advert Caption Filename

1 1 My bike (you can ride it if you like) advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 3 MGF VVC (BRG) advert003.jpg

If we decide (considering the database only) to allow additional pictures, we can then
include extra rows in the Picture table without duplicating any data unnecessarily (see
Table 7-20).

Table 7-20. The Picture Table with Multiple Pictures per Advert

ID Advert Caption Filename

1 1 My bike (you can ride it if you like) advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 2 Back of sofa advert003.jpg

4 3 MGF VVC (BRG) advert004.jpg

With the single Advert table, the query to extract the data necessary to materialize an
instance of the Advert consists of something like this:

select id,title,contents,picturecaption,picturefilename from advert where id = 1

It is obvious here that a single row will be returned, since we are carrying out the selection
on the primary key.

Once we split things into two tables, we have a slightly more ambiguous pair of queries:

select id,title,contents from advert where id = 1
select id,caption,filename from picture where advert = 1

While Hibernate is not under any particular obligation to use this pair of SQL instructions
to retrieve the data (it could reduce it to a join on the table pair), it is the easiest way of thinking
about the data we are going to retrieve. While the first query of the two is required to return a
single row, this is not true for the second query—if we have added multiple pictures, we will get
multiple rows back.

In these circumstances, there is very little difference between a one-to-one relationship
and a one-to-many relationship, except from a business perspective. That is to say, we choose
not to associate an advert with multiple pictures, even though we have that option.

This, perhaps, explains why the expression of a one-to-one relationship in Hibernate is
usually carried out via a many-to-one mapping. If you do not find that persuasive, remember
that a foreign key relationship, which is the relationship that the advert column in the Picture
table has with the id column in the Advert table, is a many-to-one relationship between the
entities.

In our example, the Picture table will be maintaining the advert column as a foreign key
into the Advert table, so this must be expressed as a many-to-one relationship with the Advert
object (see Listing 7-6).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES168

6935ch07_final.qxd 8/2/06 9:43 PM Page 168

Listing 7-6. The New Picture Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Picture">
<id name="id" type="int">

<generator class="native"/>
</id>
<many-to-one
name="advert"
class="com.hibernatebook.xmlmapping.Advert"
column="advert"/>

<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>

</class>

If you still object to the many-to-one relationship, you will probably find it cathartic to
note that we have explicitly constrained this relationship with the unique attribute. You will
also find it reassuring that in order to make navigation possible directly from the Advert to its
associated Picture, we can in fact use a one-to-one mapping entry. We need to be able to nav-
igate in this direction because we expect to retrieve adverts from the database, and then
display their associated pictures (see Listing 7-7).

Listing 7-7. The Revised Advert Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
<id name="id" type="int">

<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>
<property name="content" type="text"/>
<one-to-one name="picture"

class="com.hibernatebook.xmlmapping.Picture"
property-ref="picture">

</class>

Now that we have seen how one-to-one and many-to-one relationships are expressed, we
will see how a many-to-many relationship can be expressed.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 169

6935ch07_final.qxd 8/2/06 9:43 PM Page 169

Mapping Collections
In Figure 7-4, we show the User objects as having an unknown number of Advert instances. In
the database, this is then represented with three tables, one of which is a link table between
the two entity tables.

The Java collection classes provide the most elegant mechanism for expressing the
“many” end of a many-to-many relationship in our own classes:

public Set getAdverts();

If we use generics, we can give an even more precise specification:

public Set<Advert> getAdverts();

■Note A lot of legacy code will not use generics. However, if you have the opportunity you should do so,
as it allows you to make this sort of distinction clear at the API level, instead of at the documentation level.
Hibernate 3 is compatible with Java 5 generics.

Of course, we can place values (of Object type) into collections as well as entities, and Java
5 introduced autoboxing so that we have the illusion of being able to place primitives into
them as well.

List<Integer> ages = getAges();
int first = ages.get(0);

The only catch with collection mapping is that an additional table may be required to cor-
rectly express the relationship between the owning table and the collection. Table 7-21 shows
how it should be done; the entity table contains only its own attributes.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES170

Figure 7-4. Mapping collections

6935ch07_final.qxd 8/2/06 9:43 PM Page 170

Table 7-21. The Entity Table

ID Name

1 Entity 1

A separate collection table, on the other hand, contains the actual values (see Table 7-22).
In this case, we are linking a List to the owning entity, so we need to include a column to rep-
resent the position of the values in the list, as well as the foreign key into the owning entity
and the column for the actual values that are contained within the collection.

Table 7-22. ListTable

entityid positionInList listValue

1 1 Good

1 2 Bad

1 3 Indifferent

In a legacy schema, you may quite often encounter a situation in which all the values
have been retained within a single table (see Table 7-23).

Table 7-23. EntityTable

ID Name positionInList listValue

1 Entity 1 1 Good

1 Entity 1 2 Bad

1 Entity 1 3 Indifferent

It should be obvious that this is not just poor design from Hibernate’s perspective—it’s
also bad relational design. The values in the entity’s name attribute have been duplicated need-
lessly, so this is not a properly normalized table. We also break the foreign key of the table, and
need to form a compound key of id and positionInList. Overall, this is a poor design, and we
encourage you to use a second table if at all possible. If you must work with such an existing
design, see Chapter 13 for some techniques for approaching this type of problem.

If your collection is going to contain entity types instead of value types, the approach is
essentially the same, but your second table will contain keys into the second entity table
instead of value types. This changes the combination of tables into the situation shown in the
entity relationship diagram (see Figure 7-4), in which we have a link table joining two major
tables into a many-to-many relationship. This is a very familiar pattern in properly normal-
ized relational schemas.

The following code shows a mapping of a Set attribute representing the adverts with
which the User class is associated:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 171

6935ch07_final.qxd 8/2/06 9:43 PM Page 171

<set name="adverts"
table="user_advert_link"
cascade="save-update">

<key column="userid"/>
<many-to-many

class="com.hibernatebook.xmlmapping.Advert"
column="advertid"/>

</set>

Hibernate’s use of collections tends to expose the lazy loading issues more than most
other mappings. If you enable lazy loading, the collection that you retrieve from the session
will be a proxy implementing the relevant collection interface (in our example, Set), rather
than one of the usual Java concrete collection implementations.

This allows Hibernate to retrieve the contents of the collection only as they are required
by the user. If you load an entity, consult a single item from the collection, and then discard it,
often only a handful of SQL operations will be required. If the collection in question repre-
sents hundreds of entity instances, the performance advantages of lazy loading (compared
with the massive task of reading in all of the entities concerned) are massive.

However, you will need to ensure that you do not try to access the contents of a lazily
loaded collection at a time when it is no longer associated with the session, unless you can be
certain that the contents of the collection that you are accessing have already been loaded.

Mapping Inheritance Relationships
Figure 7-5 shows a simple class hierarchy. The superclass is Advert, and there are two classes
derived from this: a Personal class to represent personal advertisements and a Property class
to represent property advertisements.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES172

Figure 7-5. A simple inheritance hierarchy

6935ch07_final.qxd 8/2/06 9:43 PM Page 172

Hibernate can represent inheritance relationships in a relational schema in three ways,
each mapped in a slightly different way. These are as follows:

• One table for each concrete class implementation

• One table for each subclass (including interfaces and abstract classes)

• One table for each class hierarchy

Each of these techniques has different costs and benefits, so we will show you an example
mapping from each and discuss some of these issues.

One Table per Concrete Class
This approach is the easiest to implement. You map each of the concrete classes as normal,
writing mapping elements for each of its persistent properties (including those that are inher-
ited). No mapping files are required for interfaces and abstract classes.

Figure 7-6 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

While this is easy to create, there are several disadvantages; the data belonging to a parent
class is scattered across a number of different tables, so a query couched in terms of the par-
ent class is likely to cause a large number of select operations. It also means that changes to
a parent class can touch an awful lot of tables. We suggest that you file this approach under
“quick-and-dirty solutions.”

Listing 7-8 demonstrates how a derived class (Property) can be mapped to a single table
independently of its superclass (Advert).

Listing 7-8. Mapping a Property Advert with the One-Table-per-Concrete-Class Approach

<hibernate-mapping>
<class name="com.hibernatebook.xmlmapping.Property">

<id name="id" type="int">
<generator class="native"/>

</id>
<property name="title" type="string" length="255"/>

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 173

Figure 7-6. Mapping one table per concrete class

6935ch07_final.qxd 8/2/06 9:43 PM Page 173

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</class>
</hibernate-mapping>

One Table per Subclass
A slightly more complex mapping is to provide one table for each class in the hierarchy,
including the abstract and interface classes. The pure “is a” relationship of our class hierarchy
is then converted into a “has a” relationship for each entity in the schema.

Figure 7-7 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

We like this approach, as it is conceptually easy to manage, does not require complex
changes to the schema when a single parent class is modified, and is similar to how most
JVMs manage the same data behind the scenes.

The disadvantage of this approach is that while it works well from an object-oriented
point of view, and is correct from a relational point of view, it can result in poor performance.
As the hierarchy grows, the number of joins required to construct a leaf class also grows.

The technique works well for shallow inheritance hierarchies. Deep inheritance hier-
archies are often a symptom of poorly designed code, so you may want to reconsider your
application architecture before abandoning this technique. In our opinion, it should be pre-
ferred until performance issues are substantially proven to be an issue.

Listing 7-9 shows how you can map a derived class (Property) as a table joined to another
representing the superclass (Advert).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES174

Figure 7-7. Mapping one table per subclass

6935ch07_final.qxd 8/2/06 9:43 PM Page 174

Listing 7-9. Mapping a Property Advert with the One-Table-per-Subclass Approach

<hibernate-mapping>
<joined-subclass

name="com.hibernatebook.xmlmapping.Property"
extends="com.hibernatebook.xmlmapping.Advert">

<key column="advertid"/>

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</joined-subclass>
</hibernate-mapping>

Note in the mapping that we replace class with joined-subclass to associate our map-
ping explicitly with the parent. You specify the entity that is being extended and replace the
id and title classes from the subclass with a single key element that maps the foreign key
column to the parent class table’s primary key. Otherwise, the <joined-subclass> element is
virtually identical to the <class> element. Note, however, that a <joined-subclass> cannot
contain <subclass> elements and vice versa—the two strategies are not compatible.

One Table per Class Hierarchy
The last of the inheritance mapping strategies is to place each inheritance hierarchy in its own
table. The fields from each of the child classes are added to this table, and a discriminator col-
umn contains a key to identify the base type represented by each row in the table.

Figure 7-8 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 175

Figure 7-8. Mapping one table per hierarchy

6935ch07_final.qxd 8/2/06 9:43 PM Page 175

This technique offers the best performance—for simple queries on simple classes even
in the deepest of inheritance hierarchies, a single select may suffice to gather all the fields to
populate the entity.

Conversely, this is not a satisfying representation of the attribute. Changes to members of
the hierarchy will usually require a column to be altered, added, or deleted from the table. This
will often be a very slow operation. As the hierarchy grows (horizontally as well as vertically),
so too will the number of columns required by this table.

Each mapped subclass must specify the class that it extends and a value that can be used
to discriminate this subclass from the other classes held in the same table. Thus, this is known
as the discriminator value, and is mapped with a discriminator-value attribute in the
<subclass> element (see Listing 7-10).

Listing 7-10. Mapping a Property Advert with the One-Table-per-Class-Hierarchy Approach

<hibernate-mapping>
<subclass

name="com.hibernatebook.xmlmapping.Property"
extends="com.hibernatebook.xmlmapping.Advert"
discriminator-value="property">

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</subclass>
</hibernate-mapping>

Note that this also requires the specification of a discriminator column for the root of the
class hierarchy, from which the discriminator values identifying the types of the child classes
can be obtained (see Listing 7-11).

Listing 7-11. The Addition to Advert.hbm.xml Required to Support a One-Table-per-Class-
Hierarchy Approach

<discriminator column="advertType" type="string"/>

A subclass mapping cannot contain <joined-subclass> elements and vice versa—the two
strategies are not compatible.

More Exotic Mappings
The Hibernate mapping DTD is large. We have discussed the core set of mappings that you
will use on a day-to-day basis; but before we move on, we will take a very quick tour around
four of the more interesting remaining mapping types.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES176

6935ch07_final.qxd 8/2/06 9:43 PM Page 176

The any Tag
The any tag represents a polymorphic association between the attribute and several entity
classes. The mapping is expressed in the schema with a column to specify the type of the
related entity, and then columns for the identifier of the related entity.

Because a proper foreign key cannot be specified (being dependent upon multiple
tables), this is not the generally recommended technique for making polymorphic associa-
tions. When possible, use the techniques described in the previous “Mapping Inheritance
Relationships” section.

The array Tag
The array tag represents the innate array feature of the Java language. The syntax of this is
virtually identical to that used for the List collection class, and we recommend the use of
List except when primitive values are to be stored, or when you are constrained by an exist-
ing application architecture to work with arrays.

The <dynamic-component> Element
While the full-blown dynamic class approach (discussed briefly in the “Entities” section at the
beginning of the chapter) is really only suitable for prototyping exercises, the dynamic compo-
nent technique allows some of that flexibility in a package that reflects some legitimate
techniques.

The <dynamic-component> element permits you to place any of the items that can be
mapped with the normal <component> element into a map with a given key. For example,
we could obtain and combine several items of information relating to an entity’s ownership
into a single Map with named elements, as follows:

<dynamic-component name="ownership">
<property name="user" type="string" column="user"/>
<many-to-one

name="person"
class="com.hibernatebook.xmlmapping.Person"
column="person_id"/>

</dynamic-component>

The code to access this information in the entity is then very familiar:

Map map = entity.getOwnership();
System.out.println(map.get("user"));
System.out.println(map.get("person"));

The output would then be as follows:

dcminter
person: { "Dave Minter", 33, "5'10" }

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 177

6935ch07_final.qxd 8/2/06 9:43 PM Page 177

Summary
This chapter has covered the data types supported by Hibernate 3: entities, values, and com-
ponents. You have seen how all three can be expressed in a mapping file, and how each relates
to the underlying database schema. We have listed the attributes available to the major map-
ping elements, and we have discussed some detailed examples of the elements that you will
use most frequently when working with Hibernate.

In the next chapter, we will look at how a client application communicates with the data-
base representation of the entities by using the Session object.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES178

6935ch07_final.qxd 8/2/06 9:43 PM Page 178

Using the Session

You may have noticed that the Session object is the central point of access to Hibernate
functionality. We will now look at what it embodies and what that implies about how you
should use it.

Sessions
From the examples in the earlier chapters, you will have noticed that a small number of
classes dominate our interactions with Hibernate. Of these, Session is the linchpin.

The Session object is used to create new database entities, read in objects from the
database, update objects in the database, and delete objects from the database. It allows
you to manage the transaction boundaries of database access, and (in a pinch) it allows
you to obtain a traditional JDBC connection object so that you can do things to the data-
base that the Hibernate developers have not already considered in their existing design
(precious little).

If you are familiar with the JDBC approach, it helps to think of a Session object as being
somewhat like a JDBC connection, and the SessionFactory, which provides Session objects,
as being somewhat like a ConnectionPool, which provides Connection objects. These similari-
ties in roles are illustrated in Figure 8-1.

179

C H A P T E R 8

■ ■ ■

Figure 8-1. Similarities between Hibernate and JDBC objects

6935ch08_final.qxd 8/2/06 9:51 PM Page 179

SessionFactory objects are expensive objects—needlessly duplicating them will cause
problems quickly, and creating them is a relatively time-consuming process. Ideally, you
should have a single SessionFactory for each database your application will access.
SessionFactory objects are threadsafe, so it is not necessary to obtain one for each thread.
However, you will create numerous Session objects—at least one for each thread using Hiber-
nate. Sessions in Hibernate are not threadsafe, so sharing Session objects between threads
could cause data loss or deadlock. In fact, you will often want to create multiple Session
instances even during the lifetime of a specific thread (see the “Threads” section for concur-
rency issues).

■Caution The analogy between a Hibernate session and a JDBC connection only goes so far. One impor-
tant difference is that if a Hibernate Session object throws an exception of any sort, you must discard it and
obtain a new one. This prevents data in the session’s cache from becoming inconsistent with the database.

We’ve already covered the core methods in Chapter 4, so we won’t discuss all the methods
available to you through the Session interface. For an exhaustive look at what’s available, you
should read the API documentation on the Hibernate web site or in the Hibernate 3 down-
load. Table 8-1 gives an overview of the various categories of methods available to you.

Table 8-1. Hibernate Method Summary

Method Description

Create, Read, Update, and Delete

save() Saves an object to the database. This should not be called for an object
that has already been saved to the database.

saveOrUpdate() Saves an object to the database, or updates the database if the object
already exists. This method is slightly less efficient than the save() method
since it may need to perform a SELECT statement to check whether the
object already exists, but it will not fail if the object has already been saved.

merge() Merges the fields of a nonpersistent object into the appropriate persistent
object (determined by ID). If no such object exists in the database, then
one is created and saved.

persist() Reassociates an object with the session so that changes made to the object
will be persisted.

get() Retrieves a specific object from the database by the object’s identifier.

getEntityName() Retrieves the entity name (this will usually be the same as the class name
of the POJO).

getIdentifier() Determines the identifier—the object(s) representing the primary key—for
a specific object associated with the session.

load() Loads an object from the database by the object’s identifier (you should use
the get() methods if you are not certain that the object is in the database).

refresh() Refreshes the state of an associated object from the database.

update() Updates the database with changes to an object.

delete() Deletes an object from the database.

createFilter() Creates a filter (query) to narrow operations on the database.

CHAPTER 8 ■ USING THE SESSION180

6935ch08_final.qxd 8/2/06 9:51 PM Page 180

Method Description

enableFilter() Enables a named filter in queries produced by createFilter().

disableFilter() Disables a named filter.

getEnabledFilter() Retrieves a currently enabled filter object.

createQuery() Creates a Hibernate query to be applied to the database.

getNamedQuery() Retrieves a query from the mapping file.

cancelQuery() Cancels execution of any query currently in progress from another thread.

createCriteria() Creates a criteria object for narrowing search results.

Transactions and Locking

beginTransaction() Begins a transaction.

getTransaction() Retrieves the current transaction object. This does not return null when
no transaction is in progress. Instead, the active property of the returned
object is false.

lock() Gets a database lock for an object (or can be used like persist() if
LockMode.NONE is given).

Managing Resources

contains() Determines whether a specific object is associated with the database.

clear() Clears the session of all loaded instances and cancels any saves, updates,
or deletions that have not been completed. Retains any iterators that are
in use.

evict() Disassociates an object from the session so that subsequent changes to it
will not be persisted.

flush() Flushes all pending changes into the database—all saves, updates, and
deletions will be carried out; essentially, this synchronizes the session with
the database.

isOpen() Determines whether the session has been closed.

isDirty() Determines whether the session is synchronized with the database.

getCacheMode() Determines the caching mode currently employed.

setCacheMode() Changes the caching mode currently employed.

getCurrentLockMode() Determines the locking mode currently employed.

setFlushMode() Determines the approach to flushing currently used. The options are to
flush after every operation, flush when needed, never flush, or flush only
on commit.

setReadOnly() Marks a persistent object as read-only (or as writable). There are minor
performance benefits from marking an object as read-only, but changes to
its state will be ignored until it is marked as writable.

close() Closes the session, and hence, the underlying database connection;
releases other resources (such as the cache). You must not perform opera-
tions on the Session object after calling close().

getSessionFactory() Retrieves a reference to the SessionFactory object that created the current
Session instance.

The JDBC Connection

connection() Retrieves a reference to the underlying database connection.

disconnect() Disconnects the underlying database connection.

reconnect() Reconnects the underlying database connection.

isConnected() Determines whether the underlying database connection is connected.

CHAPTER 8 ■ USING THE SESSION 181

6935ch08_final.qxd 8/2/06 9:51 PM Page 181

Transactions and Locking
Transactions and locking are intimately related—the locking techniques chosen to enforce a
transaction can determine both the performance and likelihood of success of the transaction.
The type of transaction selected dictates, to some extent, the type of locking that it must use.

You are not obliged to use transactions if they do not suit your needs, but there is rarely a
good reason to avoid them. If you decide to avoid them, you will need to invoke the flush()
method on the session at appropriate points to ensure that your changes are persisted to the
database.

Transactions
A transaction is a unit of work guaranteed to behave as if you have exclusive use of the data-
base. If you wrap your work in a transaction, the behavior of other system users will not affect
your data. A transaction can be started, committed to write data to the database, or rolled
back to remove all changes from the beginning onward (usually as the result of an error). To
achieve this, you obtain a Transaction object from the database (beginning the transaction)
and manipulate the session as shown in the following code:

Session session = factory.openSession();
try {
session.beginTransaction();

// Normal session usage here...

session.getTransaction().commit();
} catch (HibernateException e) {
Transaction tx = session.getTransaction();
if (tx.isActive()) tx.rollback();

} finally {
session.close();

}

In the real world, it’s not actually desirable for all transactions to be fully ACID (see the
sidebar entitled “The ACID Tests”) because of the performance problems that this can cause.

Different database suppliers support and permit you to break the ACID rules to a lesser or
greater extent, but the degree of control over the isolation rule is actually mandated by the
SQL-92 standard. There are important reasons that you might want to break this rule, so both
JDBC and Hibernate also make explicit allowances for it.

CHAPTER 8 ■ USING THE SESSION182

6935ch08_final.qxd 8/2/06 9:51 PM Page 182

The isolation levels permitted by JDBC and Hibernate are listed in Table 8-2.

Table 8-2. JDBC Isolation Levels

Level Name Transactional Behavior

0 None Anything is permitted; the database or driver does not support
transactions.

1 Read Uncommitted Dirty, nonrepeatable, and phantom reads are permitted.

2 Read Committed Nonrepeatable reads and phantom reads are permitted.

4 Repeatable Read Phantom reads are permitted.

8 Serializable The rule must be obeyed absolutely.

A dirty read may see the in-progress changes of an uncommitted transaction. As with the
isolation example discussed in the preceding sidebar, it could see the wrong ZIP code for an
address.

A nonrepeatable read sees different data for the same query. For example, it might deter-
mine a specific user’s ZIP code at the beginning of the transaction and again at the end, and
get a different answer both times without making any updates.

A phantom read sees different numbers of rows for the same query. For example, it might
see 100 users in the database at the beginning of the query and 105 at the end without making
any updates.

The HSQLDB database that we are using in this book only supports the first level of isola-
tion here: Read Uncommitted. While this means that deadlocks cannot occur (see the “Dead-
locks” section later in the chapter), the three undesirable behaviors of dirty, nonrepeatable,
and phantom reads are permitted.

CHAPTER 8 ■ USING THE SESSION 183

THE ACID TESTS

• Atomicity: A transaction should be all or nothing. If it fails to complete, the database will be left as if
none of the operations had ever been performed—this is known as a rollback.

• Consistency: A transaction should be incapable of breaking any rules defined for the database. For
example, foreign keys must be obeyed. If for some reason this is impossible, the transaction will be
rolled back.

• Isolation: The effects of the transaction will be completely invisible to all other transactions until it has
completed successfully. This guarantees that the transaction will always see the data in a sensible
state. For example, an update to a user’s address should only contain a correct address (i.e., it will
never have the house name for one location but the ZIP code for another); without this rule, a transac-
tion could easily see when another transaction had updated the first part but had not yet completed.

• Durability: The data should be retained intact. If the system fails for any reason, it should always be
possible to retrieve the database up to the moment of the failure.

6935ch08_final.qxd 8/2/06 9:51 PM Page 183

Hibernate treats the isolation as a global setting—you apply the configuration option
hibernate.connection.isolation in the usual manner, setting it to one of the values permitted
in Table 8-2. This is not always ideal. You will sometimes want to treat one particular trans-
action at a high level of isolation (usually Serializable), while permitting lower degrees of
isolation for others. To do so, you will need to obtain the JDBC connection directly, alter the
isolation level, begin the transaction, roll back or clean up the transaction as appropriate, and
reset the isolation level back to its original value before releasing the connection for general
usage. Hibernate does not provide a more direct way to alter the isolation level of the connec-
tion in a localized way. The implementation of the createUser() method, shown in Listing 8-1,
demonstrates the additional complexity that the connection-specific transaction isolation
involves.

Listing 8-1. Using a Specific Isolation Level

public static void createUser(String username)
throws HibernateException

{
Session session = factory.openSession();
int isolation = -1;
try {

isolation = session.connection().getTransactionIsolation();
session.connection().setTransactionIsolation(

Connection.TRANSACTION_SERIALIZABLE);
session.beginTransaction();

// Normal usage of the Session here...
Publisher p = new Publisher(username);
Subscriber s = new Subscriber(username);
session.saveOrUpdate(p);
session.saveOrUpdate(s);

// Commit the transaction
session.getTransaction().commit();

} catch (SQLException e1) {
rollback(session);
throw new HibernateException(e1);

} catch (HibernateException e1) {
rollback(session);
throw e1;

} finally {
// reset isolation
reset(session,isolation);

// Close the session
close(session);

}
}

CHAPTER 8 ■ USING THE SESSION184

6935ch08_final.qxd 8/2/06 9:51 PM Page 184

Fortunately, the normal case for a transaction using the global isolation level is much sim-
pler. We provide a more standard implementation of the createUser() method for comparison
in Listing 8-2.

Listing 8-2. Using the Global (Default) Isolation Level

public static void createUser(String username) throws HibernateException {
Session session = factory.openSession();
try {

session.beginTransaction();

// Normal usage of the Session here...
Publisher p = new Publisher(username);
Subscriber s = new Subscriber(username);
session.saveOrUpdate(p);
session.saveOrUpdate(s);

// Commit the transaction
session.getTransaction().commit();

} catch (HibernateException e1) {
rollback(session);
throw e1;

} finally {
// Close the session
close(session);

}
}

Locking
A database can conform to these various levels of isolation in a number of ways, and you will
need a working knowledge of locking to elicit the desired behavior and performance from
your application in all circumstances.

To prevent simultaneous access to data, the database itself will acquire a lock on that
data. This can be acquired for the momentary operation on the data only, or it can be retained
until the end of the transaction. The former is called optimistic locking and the latter is called
pessimistic locking.

The Read Uncommitted isolation level always acquires optimistic locks, whereas the
Serializable isolation level will only acquire pessimistic locks. Some databases offer a feature
that allows you to append the FOR UPDATE query to a select operation, which requires the data-
base to acquire a pessimistic lock even in the lower isolation levels.

Hibernate provides some support for this feature when it is available, and takes it some-
what further by adding facilities that describe additional degrees of isolation obtainable from
Hibernate’s own cache.

The LockMode object controls this fine-grained isolation (see Table 8-3). It is only applica-
ble to the get() methods, so it is limited—however, when possible, it is preferable to the direct
control of isolation mentioned previously.

CHAPTER 8 ■ USING THE SESSION 185

6935ch08_final.qxd 8/2/06 9:51 PM Page 185

Table 8-3. Lock Modes

Mode Description

NONE Reads from the database only if the object is not available from the caches.

READ Reads from the database regardless of the contents of the caches.

UPGRADE Obtains a dialect-specific upgrade lock for the data to be accessed (if this is
available from your database).

UPGRADE_NOWAIT Behaves like UPGRADE, but when support is available from the database and
dialect, the method will fail with a locking exception immediately. Without this
option, or on databases for which it is not supported, the query must wait for
a lock to be granted (or for a timeout to occur).

An additional lock mode, WRITE, is acquired by Hibernate automatically when it has writ-
ten to a row within the current transaction. This mode cannot be set explicitly, but calls to
getLockMode may return it.

Having discussed locking in general, we need to touch on some of the problems that locks
can cause.

Deadlocks
Even if you have not encountered a deadlock (sometimes given the rather louche name of
“deadly embrace”) in databases, you have probably encountered the problem in multithreaded
Java code. The problem arises from similar origins.

Two threads of execution can get into a situation in which each is waiting for the other
to release a resource that it needs. The most common way to create this situation in a data-
base is shown in Figure 8-2.

Each thread obtains a lock on its table when the update begins. Each thread proceeds
until the table held by the other user is required. Neither thread can release the lock on its
own table until the transaction completes—so something has to give.

A deadlock can also occur when a single thread of execution is carrying out an equivalent
sequence of operations using two Session objects connected to the same database. In prac-
tice, the multiple-thread scenario is more common.

Fortunately, a database management system (DBMS) can detect this situation automati-
cally, at which point the transaction of one or more of the offending processes will be aborted
by the database. The resulting deadlock error will be received and handled by Hibernate as a
normal HibernateException. Now you must roll back your transaction, close the session, and
then (optionally) try again.

Listing 8-3 demonstrates how four updates from a pair of sessions can cause a deadlock.
If you look at the output from the threads, you will see that one of them completes while the
other fails with a deadlock error.

■Caution The HSQL database does not support sufficient levels of isolation to run this example—you
will never get a deadlock, and you will get inconsistent data. If you want to see the deadlock in action,
you will need to use a more sophisticated database product (e.g., PostgreSQL).

You should also be aware that if you want to run the test using the MySQL database, you must use
MySQLInnoDBDialect to ensure that the appropriate level of transactions is supported.

CHAPTER 8 ■ USING THE SESSION186

6935ch08_final.qxd 8/2/06 9:51 PM Page 186

Looking at the database after completion, you will see that the test user has been
replaced with either jeff or dave in both tables (you will never see dave from one thread and
jeff from the other). Though it is not necessary here, because we close the session regardless,
in a more extensive application it is important to ensure that the session associated with a
deadlock or any other Hibernate exception is closed and never used again because the cache
may be left in a corrupted state.

It is worth building and running Listing 8-3 to ensure that you are familiar with the
symptoms of a deadlock when they occur.

Listing 8-3. Code to Generate a Deadlock

package com.hibernatebook.session.deadlock;

import java.sql.Connection;
import java.sql.SQLException;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;

public class GenerateDeadlock {

private static SessionFactory factory = new Configuration().configure()
.buildSessionFactory();

public static void createUser(String username) throws HibernateException {
Session session = factory.openSession();
try {

session.beginTransaction();

CHAPTER 8 ■ USING THE SESSION 187

Figure 8-2. The anatomy of a deadlock

6935ch08_final.qxd 8/2/06 9:51 PM Page 187

// Normal usage of the Session here...
Publisher p = new Publisher(username);
Subscriber s = new Subscriber(username);
session.saveOrUpdate(p);
session.saveOrUpdate(s);

// Commit the transaction
session.getTransaction().commit();

} catch (HibernateException e1) {
rollback(session);
throw e1;

} finally {
// Close the session
close(session);

}
}

public static void reset(Session session, int isolation) {
if (isolation >= 0) {

try {
session.connection().setTransactionIsolation(isolation);

} catch (SQLException e) {
System.err.println("Could not reset the isolation level: " + e);

} catch (HibernateException e) {
System.err.println("Could not reset the isolation level: " + e);

}
}

}

public static void close(Session session) {
try {

session.close();
} catch (HibernateException e) {

System.err.println("Could not close the session: " + e);
}

}

public static void rollback(Session session) {
try {

Transaction tx = session.getTransaction();
if (tx.isActive())

tx.rollback();
} catch (HibernateException e) {

System.err.println("Could not rollback the session: " + e);
}

}

CHAPTER 8 ■ USING THE SESSION188

6935ch08_final.qxd 8/2/06 9:51 PM Page 188

public static void main(String[] argv) {

System.out.println("Creating test user...");
createUser("test");

System.out.println("Proceeding to main test...");
Session s1 = factory.openSession();
Session s2 = factory.openSession();

try {
s1.beginTransaction();
s2.beginTransaction();

System.out.println("Update 1");
Query q1 = s1.createQuery("from Publisher");
Publisher pub1 = (Publisher) q1.uniqueResult();
pub1.setUsername("jeff");
s1.flush();

System.out.println("Update 2");
Query q2 = s2.createQuery("from Subscriber");
Subscriber sub1 = (Subscriber) q2.uniqueResult();
sub1.setUsername("dave");
s2.flush();

System.out.println("Update 3");
Query q3 = s1.createQuery("from Subscriber");
Subscriber sub2 = (Subscriber) q3.uniqueResult();
sub2.setUsername("jeff");
s1.flush();

System.out.println("Update 4");
Query q4 = s2.createQuery("from Publisher");
Publisher pub2 = (Publisher) q4.uniqueResult();
pub2.setUsername("dave");
s2.flush();

s1.getTransaction().commit();
s2.getTransaction().commit();

} catch (RuntimeException e1) {
e1.printStackTrace();
// Run the boilerplate to roll back the sessions
rollback(s1);
rollback(s2);
throw e1;

} finally {

CHAPTER 8 ■ USING THE SESSION 189

6935ch08_final.qxd 8/2/06 9:51 PM Page 189

// Run the boilerplate to close the sessions
close(s1);
close(s2);

}
}

}

Caching
Accessing a database is an expensive operation, even for a simple query. The request has to be
sent (usually over the network) to the server. The database server may have to compile the
SQL into a query plan. The query plan has to be run and is limited largely by disk perform-
ance. The resulting data has to be shuttled back (again, usually across the network) to the
client, and only then can the application program begin to process the results.

Most good databases will cache the results of a query if it is run multiple times, eliminat-
ing the disk I/O and query compilation time; but this will be of limited value if there are large
numbers of clients making substantially different requests. Even if the cache generally holds
the results, the time taken to transmit the information across the network is often the larger
part of the delay.

Some applications will be able to take advantage of in-process databases, but this is the
exception rather than the rule—and such databases have their own limitations.

The natural and obvious answer is to have a cache at the client end of the database con-
nection. This is not a feature provided or supported by JDBC directly, but Hibernate provides
one cache (the first-level, or L1, cache) through which all requests must pass. A second-level
cache is optional and configurable.

The L1 cache ensures that within a session, requests for a given object from a database
will always return the same object instance, thus preventing data from conflicting and pre-
venting Hibernate from trying to load an object multiple times.

Items in the L1 cache can be individually discarded by invoking the evict() method on
the session for the object that you wish to discard. To discard all items in the L1 cache, invoke
the clear() method.

In this way, Hibernate has a major advantage over the traditional JDBC approach: with no
additional effort from the developer, a Hibernate application gains the benefits of a client-side
database cache.

Figure 8-3 shows the two caches available to the session: the compulsory L1 cache,
through which all requests must pass, and the optional level-two (L2) cache. The L1 cache will
always be consulted before any attempt is made to locate an object in the L2 cache. You will
notice that the L2 cache is external to Hibernate; and although it is accessed via the session in
a way that is transparent to Hibernate users, it is a pluggable interface to any one of a variety
of caches that are maintained on the same JVM as your Hibernate application or on an exter-
nal JVM. This allows a cache to be shared between applications on the same machine, or even
between multiple applications on multiple machines.

In principle, any third-party cache can be used with Hibernate. An org.hibernate.cache.
CacheProvider interface is provided, which must be implemented to provide Hibernate with a
handle to the cache implementation. The cache provider is then specified by giving the imple-
mentation class name as the value of the hibernate.cache.provider_class property.

CHAPTER 8 ■ USING THE SESSION190

6935ch08_final.qxd 8/2/06 9:51 PM Page 190

In practice, the four production-ready caches, which are already supported, will be ade-
quate for most users (see Table 8-4).

Table 8-4. L2 Cache Implementations Supported by Hibernate Out of the Box

Cache Name Description

EHCache An in-process cache

OSCache An alternative in-process cache

SwarmCache A multicast distributed cache

TreeCache A multicast distributed transactional cache

The type of access to the L2 cache can be configured on a per-session basis by selecting
a CacheMode option (see Table 8-5) and applying it with the setCacheMode() method.

Table 8-5. CacheMode Options

Mode Description

NORMAL Data is read from and written to the cache as necessary.

GET Data is never added to the cache (although cache entries are invalidated when
updated by the session).

PUT Data is never read from the cache, but cache entries will be updated as they are read
from the database by the session.

REFRESH This is the same as PUT, but the use_minimal_puts Hibernate configuration option
will be ignored if it has been set.

IGNORE Data is never read from or written to the cache (except that cache entries will still be
invalidated when they are updated by the session).

The CacheMode setting does not affect the way in which the L1 cache is accessed.

CHAPTER 8 ■ USING THE SESSION 191

Figure 8-3. The session’s relationship to the caches

6935ch08_final.qxd 8/2/06 9:51 PM Page 191

The decision to use an L2 cache is not clear-cut. Although it has the potential to greatly
reduce access to the database, the benefits depend on the type of cache and the way in which
it will be accessed.

A distributed cache will cause additional network traffic. Some types of database access
may result in the contents of the cache being flushed before they are used—in which case, it
will be adding unnecessary overhead to the transactions.

The L2 cache cannot account for the changes in the underlying data, which are the result
of actions by an external program that is not cache-aware. This could potentially lead to prob-
lems with stale data, which is not an issue with the L1 cache.

In practice, as with most optimization problems, it is best to carry out performance test-
ing under realistic load conditions. This will let you determine if a cache is necessary and help
you select which one will offer the greatest improvement.

Threads
Having considered the caches available to a Hibernate application, you may now be concerned
about the risk of a conventional Java deadlock if two threads of execution were to contend for
the same object in the Hibernate session cache.

In principle, this is possible—and unlike database deadlocks, Java thread deadlocks do
not time out with an error message. Fortunately, there is a very simple solution:

Patient: Doctor, it hurts when I do this.
Doctor: Don’t do that then.
Do not share the Session object between threads. This will eliminate any risk of deadlock-

ing on objects contained within the session cache.
The easiest way to ensure that you do not use the same Session object outside the current

thread is to use an instance local to the current method. If you absolutely must maintain an
instance for a longer duration, maintain the instance within a ThreadLocal object. For most pur-
poses, however, the lightweight nature of the Session object makes it practical to construct, use,
and destroy an instance, rather than to store a session.

Summary
In this chapter, we have discussed the nature of Session objects and how they can be used to
obtain and manage transactions. We have looked at the two levels of caching that are available
to applications, and how concurrent threads should manage sessions.

In the next chapter, we discuss the various ways in which you can retrieve objects from
the database. We also show you how to perform more complicated queries against the data-
base using HQL.

CHAPTER 8 ■ USING THE SESSION192

6935ch08_final.qxd 8/2/06 9:51 PM Page 192

Searches and Queries

In the last chapter, we discussed how the Hibernate session is used to interact with the data-
base. Some of the session’s methods take query strings in their parameter lists or return Query
objects. These methods are used to request arbitrary information from the database. In order to
fully show how they’re used, we must introduce you to the HQL used to phrase these requests.
As well as extracting information (with SELECT), HQL can be used to alter the information in the
database (with INSERT, UPDATE, and DELETE). We cover all of this basic functionality in this chap-
ter. Hibernate’s query facilities do not allow you to alter the database structure.

HQL is an object-oriented query language, similar to SQL, but instead of operating on
tables and columns, HQL works with persistent objects and their properties.

HQL is a language with its own syntax and grammar. HQL is written as strings, like from
Product p, as opposed to Hibernate’s criteria queries (discussed in the next chapter), which
take the form of a conventional Java API. Ultimately, your HQL queries are translated by
Hibernate into conventional SQL queries, and Hibernate also provides an API that allows
you to directly issue SQL queries.

HQL
While most ORM tools and object databases offer an object query language, Hibernate’s HQL
stands out as being complete and easy to use. Although you can use SQL statements directly
with Hibernate (which is covered in detail in the “Using Native SQL” section of this chapter),
we recommend that you use HQL (or criteria) whenever possible to avoid database portability
hassles, and to take advantage of Hibernate’s SQL-generation and caching strategies. In addi-
tion to its technical advantages over traditional SQL, HQL is a more compact query language
than SQL because it can make use of the relationship information defined in the Hibernate
mappings.

We realize that not every developer trusts Hibernate’s generated SQL to be perfectly opti-
mized. If you do encounter a performance bottleneck in your queries, we recommend that you
use SQL tracing on your database during performance testing of your critical components. If
you see an area that needs optimization, we suggest trying first to optimize using HQL, and
only later dropping into native SQL. Hibernate 3 provides statistics information through a JMX
MBean, which you can use for analyzing Hibernate’s performance. Hibernate’s statistics also
give you insight into how caching is performing.

193

C H A P T E R 9

■ ■ ■

6935ch09_final.qxd 8/2/06 9:53 PM Page 193

■Note If you would like to execute HQL statements through a GUI-based tool, the Hibernate team provides
a Hibernate console for Eclipse in the Hibernate Tools subproject. This console is a plug-in for recent ver-
sions of Eclipse. This tool is described in detail in Appendix B.

Syntax Basics
HQL is inspired by SQL and is the inspiration for the new EJB Query Language (EJB QL). The
EJB QL specification is included in the standard for EJB 3 available from the Java Community
Process web site (www.jcp.org/en/jsr/detail?id=220). HQL’s syntax is defined as an ANTLR
grammar; the grammar files are included in the grammar directory of the Hibernate core down-
load (ANTLR is a tool for building language parsers).

As the ANTLR grammar files are somewhat cryptic, and as not every statement that is per-
missible according to the ANTLR grammar’s rules can be used in Hibernate, we outline the
syntax for the four fundamental HQL operations in this section. Note that the following descrip-
tions of syntax are not comprehensive—there are some deprecated or more obscure usages
(particularly for SELECT statements) that are not covered here.

UPDATE
UPDATE alters the details of existing objects in the database. In-memory entities will not be
updated to reflect changes resulting from issuing UPDATE statements. Here’s the syntax of the
UPDATE statement:

UPDATE [VERSIONED]
[FROM] path [[AS] alias] [, ...]
SET property = value [, ...]
[WHERE logicalExpression]

path is the fully qualified name of the entity or entities. The alias names may be used to
abbreviate references to specific entities or their properties, and must be used when property
names used in the query would otherwise be ambiguous.

The property names are the names of properties of entities listed in the FROM path.
The syntax of logical expressions is discussed later, in the “Using Restrictions with HQL”

section.

DELETE
DELETE removes the details of existing objects from the database. In-memory entities will not
be updated to reflect changes resulting from DELETE statements. This also means that cascade
rules will not be followed for deletions carried out using HQL. This approach to deletion is
commonly referred to as “bulk deletion” since it is the most efficient way to remove large
numbers of entities from the database. Here’s the syntax of the DELETE statement:

CHAPTER 9 ■ SEARCHES AND QUERIES194

6935ch09_final.qxd 8/2/06 9:53 PM Page 194

DELETE
[FROM] path [[AS] alias]
[WHERE logicalExpression]

path is the fully qualified name of an entity. The alias names may be used to abbreviate
references to specific entities or their properties, and must be used when property names
used in the query would otherwise be ambiguous.

INSERT
An HQL INSERT cannot be used to directly insert arbitrary entities—it can only be used to
insert entities constructed from information obtained from SELECT queries (unlike ordinary
SQL, in which an INSERT command can be used to insert arbitrary data into a table, as well as
insert values selected from other tables). Here’s the syntax of the INSERT statement:

INSERT
INTO path (property [, ...])
select

path is the fully qualified name of an entity. The property names are the names of proper-
ties of entities listed in the FROM path of the incorporated SELECT query.

The select query is an HQL SELECT query (as described in the next section).

SELECT
An HQL SELECT is used to query the database for classes and their properties. As noted previ-
ously, this is very much a summary of the full expressive power of HQL SELECT queries—
however, for more complex joins and the like, you may find that the use of the Criteria API
described in the next chapter is more appropriate. Here’s the syntax of the SELECT statement:

[SELECT [DISTINCT] property [, ...]]
FROM path [[AS] alias] [, ...] [FETCH ALL PROPERTIES]
WHERE logicalExpression
GROUP BY property [, ...]
HAVING logicalExpression
ORDER BY property [ASC | DESC] [, ...]

path is the fully qualified name of an entity. The alias names may be used to abbreviate
references to specific entities or their properties, and must be used when property names used
in the query would otherwise be ambiguous.

The property names are the names of properties of entities listed in the FROM path.
If FETCH ALL PROPERTIES is used, then lazy loading semantics will be ignored, and all the

immediate properties of the retrieved object(s) will be actively loaded (this does not apply
recursively).

When the properties listed consist only of the names of aliases in the FROM clause, the
SELECT clause can be omitted.

CHAPTER 9 ■ SEARCHES AND QUERIES 195

6935ch09_final.qxd 8/2/06 9:53 PM Page 195

The First Example with HQL
The simplest HQL query returns all objects for a given class in the database. In a syntax similar
to that of SQL, we use the HQL clause from. As noted, when retrieving objects with HQL, you
do not have to use the leading select clause for this query—instead, you can use the following
simple shortcut query to select all objects from the Product table:

from Product

■Note Like all SQL syntax, you can write from in lowercase or uppercase (or mixed case). However, any
Java classes or properties that you reference in an HQL query have to be specified in the proper case. For
example, when you query for instances of a Java class named Product, the HQL query from Product is
the equivalent of FROM Product. However, the HQL query from product is not the same as the HQL query
from Product. Because Java class names are case-sensitive, Hibernate is case-sensitive about class
names as well.

Embedding the following HQL statement into our application is straightforward. The
org.hibernate.Session object contains a method named createQuery():

public Query createQuery(String queryString) throws HibernateException

The createQuery() method takes a valid HQL statement, and returns an org.hibernate.
Query object. The Query class provides methods for returning the query results as a Java List,
as an Iterator, or as a unique result. Other functionality includes named parameters, results
scrolling, JDBC fetch sizes, and JDBC timeouts. You can also add a comment to the SQL that
Hibernate creates, which is useful for tracing which HQL statements correspond to which
SQL statements.

In order to fully illustrate our examples, we must first introduce the sample application
that we are using in this chapter and the next (which discusses criteria). The sample applica-
tion has three classes: Supplier, Product, and Software. The Supplier class, shown in
Listing 9-1, has a name property and a List collection of Product objects.

Listing 9-1. The Supplier Class

package com.hibernatebook.queries;

import java.util.ArrayList;
import java.util.List;

public class Supplier
{

private int id;
private String name;
private List products = new ArrayList();

CHAPTER 9 ■ SEARCHES AND QUERIES196

6935ch09_final.qxd 8/2/06 9:53 PM Page 196

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public List getProducts() {
return products;

}

public void setProducts(List products) {
this.products = products;

}
}

The Product class, shown in Listing 9-2, has name, price, and description properties,
along with a reference to its parent supplier.

Listing 9-2. The Product Class

package com.hibernatebook.queries;

public class Product
{

private int id;
private Supplier supplier;

private String name;
private String description;
private double price;

public Product() {
}

CHAPTER 9 ■ SEARCHES AND QUERIES 197

6935ch09_final.qxd 8/2/06 9:53 PM Page 197

public Product(String name, String description, double price) {
this.name = name;
this.description = description;
this.price = price;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Supplier getSupplier() {
return supplier;

}

public void setSupplier(Supplier supplier) {
this.supplier = supplier;

}

public double getPrice() {
return price;

}

public void setPrice(double price) {
this.price = price;

}
}

CHAPTER 9 ■ SEARCHES AND QUERIES198

6935ch09_final.qxd 8/2/06 9:53 PM Page 198

The Software class, shown in Listing 9-3, extends the Product class and adds a version
property—we added this subclass so that we could demonstrate polymorphism with Hibernate’s
queries.

Listing 9-3. The Software Class

package com.hibernatebook.queries;

public class Software extends Product
{

private String version;

public Software() {
}

public Software(String name, String description,
double price, String version)

{
super(name, description, price);
this.setVersion(version);

}

public String getVersion() {
return version;

}

public void setVersion(String version) {
this.version = version;

}
}

The Hibernate mapping files for these three classes are in the source directory for the
book, along with a test harness for populating the database and running the examples in this
chapter and the next.

The first example executes our HQL statement, from Product, and then retrieves a List of
Product objects.

Query query = session.createQuery("from Product");
List results = query.list();

Many of the other examples in this chapter use the same supporting Java code as this
example. We are going to provide just the HQL for these examples—you can execute them
the same way we did here, substituting that HQL for the from Product HQL statement. This
should make each example clearer as to what you should be looking at. You could also exe-
cute these HQL statements in the Hibernate Tools scratch pad.

CHAPTER 9 ■ SEARCHES AND QUERIES 199

6935ch09_final.qxd 8/2/06 9:53 PM Page 199

Logging the Underlying SQL
Hibernate can output the underlying SQL behind your HQL queries into your application’s log
file. This is especially useful if the HQL query does not give the results you expect, or the query
takes longer than you wanted. You can run the SQL that Hibernate generates directly against
your database in the database’s query analyzer at a later date to determine the causes of the
problem. This is not a feature you will have to use frequently, but it is useful should you need
to turn to your database administrators for help in tuning your Hibernate application.

The easiest way to see the SQL for a Hibernate HQL query is to enable SQL output in
the logs with the hibernate.show_sql property. Set this property to true in your hibernate.
properties or hibernate.cfg.xml configuration files, and Hibernate will output the SQL
into the logs. You do not need to enable any other logging settings—although setting log-
ging for Hibernate to debug also outputs the generated SQL statements, along with a lot of
other verbiage.

After enabling SQL output in Hibernate, you should rerun the previous example. Here is
the generated SQL statement for the HQL statement from Product:

select product0_.id as id, product0_.name as name0_, product0_.description ➥

as descript3_0_, product0_.price as price0_, product0_.supplierId ➥

as supplierId0_, product0_1_.version as version1_, ➥

case when product0_1_.productId is not null then 1 ➥

when product0_.id is not null then 0 end ➥

as clazz_ from Product product0_ left outer join Software product0_1_ ➥

on product0_.id=product0_1_.productId

As an aside, remember that the Software class inherits from Product, which complicates
Hibernate’s generated SQL for this simple query. When we select all objects from our simple
Supplier class, the generated SQL for the HQL query from Supplier is much simpler:

select supplier0_.id as id, supplier0_.name as name2_ from Supplier supplier0_

When you look in your application’s output for the Hibernate SQL statements, they will
be prefixed with Hibernate:. The previous SQL statement would look like this:

Hibernate: select supplier0_.id as id, supplier0_.name as name2_ ➥

from Supplier supplier0_

If you turn your log4j logging up to debug for the Hibernate classes, you will see SQL state-
ments in your log files, along with lots of information about how Hibernate parsed your HQL
query and translated it into SQL.

Commenting the Generated SQL
Tracing your HQL statements through to the generated SQL can be difficult, so Hibernate pro-
vides a commenting facility on the Query object that lets you apply a comment to a specific
query. The Query interface has a setComment() method that takes a String object as an argu-
ment, as follows:

public Query setComment(String comment)

CHAPTER 9 ■ SEARCHES AND QUERIES200

6935ch09_final.qxd 8/2/06 9:53 PM Page 200

Use this to identify the SQL output in your application’s logs if SQL logging is enabled. For
instance, if we add a comment to this example, the Java code would look like this:

String hql = "from Supplier";
Query query = session.createQuery(hql);
query.setComment("My HQL: " + hql);
List results = query.list();

The output in your application’s log will have the comment in a Java-style comment
before the SQL:

Hibernate: /*My HQL: from Supplier*/ select supplier0_.id as id, supplier0_.name ➥

as name2_ from Supplier supplier0_

We have found this useful for identifying SQL in our logs, especially because the gener-
ated SQL is a little difficult to follow when you are scanning large quantities of it in logs.

The from Clause and Aliases
We have already discussed the basics of the from clause in HQL in the earlier section, “The
First Example with HQL.” The most important feature to note is the alias. Hibernate allows
you to assign aliases to the classes in your query with the as clause. Use the aliases to refer
back to the class inside the query. For instance, our previous simple example would be the
following:

from Product as p

or the following:

from Product as product

You’ll see either alias-naming convention in applications. The as keyword is optional—
you can also specify the alias directly after the class name, as follows:

from Product product

If you need to fully qualify a class name in HQL, just specify the package and class name.
Hibernate will take care of most of this behind the scenes, so you only really need this if you
have classes with duplicate names in your application. If you need to do this in Hibernate,
use syntax such as the following:

from com.hibernatebook.criteria.Product

The from clause is very basic and useful for working directly with objects. However, if you
want to work with the object’s properties without loading the full objects into memory, you
must use the select clause.

The select Clause and Projection
The select clause provides more control over the result set than the from clause. If you want to
obtain the properties of objects in the result set, use the select clause. For instance, we could

CHAPTER 9 ■ SEARCHES AND QUERIES 201

6935ch09_final.qxd 8/2/06 9:53 PM Page 201

run a projection query on the products in the database that only returned the names, instead
of loading the full object into memory, as follows:

select product.name from Product product

The result set for this query will contain a List of Java String objects. Additionally, we can
retrieve the prices and the names for each product in the database, like so:

select product.name, product.price from Product product

This result set contains a List of Object arrays—each array represents one set of proper-
ties (in this case, a name and price pair).

If you’re only interested in a few properties, this approach can allow you to reduce net-
work traffic to the database server and save memory on the application’s machine.

Using Restrictions with HQL
As with SQL, you use the where clause to select results that match your query’s expressions.
HQL provides many different expressions that you can use to construct a query. In the HQL
language grammar, there are the following possible expressions:

• Logic operators: OR, AND, NOT

• Equality operators: =, <>, !=, ^=

• Comparison operators: <, >, <=, >=, like, not like, between, not between

• Math operators: +, -, *, /

• Concatenation operator: ||

• Cases: Case when <logical expression> then <unary expression> else
_<unary expression> end

• Collection expressions: some, exists, all, any

In addition, you may also use the following expressions in the where clause:

• HQL named parameters: :date, :quantity

• JDBC query parameter: ?

• Date and time SQL-92 functional operators: current_time(), current_date(),
current_timestamp()

• SQL functions (supported by the database): length(), upper(), lower(), ltrim(),
rtrim(), etc.

Using these restrictions, you can build a where clause in HQL that is as powerful as an SQL
query. For many queries, HQL syntax is more compact and elegant than the Criteria Query API
syntax (discussed in Chapter 10). For instance, here is an example of a criteria query that uses
logical expressions:

CHAPTER 9 ■ SEARCHES AND QUERIES202

6935ch09_final.qxd 8/2/06 9:53 PM Page 202

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description","blocks%"));
List results = crit.list();

The equivalent HQL would be the following:

from Product where price > 25.0 and name like 'Mou%'

We would have to wrap that HQL in a couple of lines of Java code, but even so, we find this
particular example to be clearer in HQL. In the previous HQL example, you can see that we
used the where clause with a > (greater than) comparison operator, an and logical operator, and
a like comparison operator. You do have to enclose literal strings in quotes in HQL. To find
names that have the literal Mou at the beginning of the string, we used % in the query.

Using Named Parameters
Hibernate supports named parameters in its HQL queries. This makes writing queries that
accept input from the user easy—and you do not have to defend against SQL injection attacks.

■Note SQL injection is an attack against applications that create SQL directly from user input with string
concatenation. For instance, if we accept a name from the user through a web application form, then it
would be very bad form to construct an SQL (or HQL) query like this:

String sql = "select p from products where name = '" + name + "'";

A malicious user could pass a name to the application that contained a terminating quote and semicolon, fol-
lowed by another SQL command (such as delete from products) that would let them do whatever they
wanted. They would just need to end with another command that matched the SQL statement’s ending quote.
This is a very common attack, especially if the malicious user can guess details of your database structure.

You could escape the user’s input yourself for every query, but it is much less of a security
risk if you let Hibernate manage all of your input with named parameters. Hibernate’s named
parameters are similar to the JDBC query parameters (?) you may already be familiar with, but
Hibernate’s parameters are less confusing. It is also more straightforward to use Hibernate’s
named parameters if you have a query that uses the same parameter in multiple places.

When you use JDBC query parameters, any time you add, change, or delete parts of the
SQL statement, you need to update your Java code that sets its parameters, because the
parameters are indexed based on the order they appear in the statement. Hibernate lets you
provide names for the parameters in the HQL query, so you do not have to worry about acci-
dentally moving parameters further up or back in the query.

CHAPTER 9 ■ SEARCHES AND QUERIES 203

6935ch09_final.qxd 8/2/06 9:53 PM Page 203

The simplest example of named parameters uses regular SQL types for the parameters:

String hql = "from Product where price > :price";
Query query = session.createQuery(hql);
query.setDouble("price",25.0);
List results = query.list();

Normally, you do not know the values that are to be substituted for the named parameters—
and if you did, you would probably encode them directly into the query string. When the value to
be provided will be known only at run time, you can use some of HQL’s object-oriented features
to provide objects as values for named parameters. The Query interface has a setEntity() method
that takes the name of a parameter and an object. Using this functionality, we could retrieve all
the products that have a supplier whose object we already have:

String supplierHQL = "from Supplier where name='MegaInc'";
Query supplierQuery = session.createQuery(supplierHQL);
Supplier supplier = (Supplier) supplierQuery.list().get(0);

String hql = "from Product as product where product.supplier=:supplier";
Query query = session.createQuery(hql);
query.setEntity("supplier",supplier);
List results = query.list();

You can also use regular JDBC query parameters in your HQL queries. We do not particu-
larly see any reason why you would want to, but they do work.

Paging Through the Result Set
Pagination through the result set of a database query is a very common application pattern.
Typically, you would use pagination for a web application that returned a large set of data
for a query. The web application would page through the database query result set to build
the appropriate page for the user. The application would be very slow if the web application
loaded all of the data into memory for each user. Instead, you can page through the result
set and retrieve the results you are going to display one chunk at a time.

There are two methods on the Query interface for paging: setFirstResult() and
setMaxResults(), just as with the Criteria interface. The setFirstResult() method takes
an integer that represents the first row in your result set, starting with row 0. You can tell
Hibernate to only retrieve a fixed number of objects with the setMaxResults() method.
Your HQL is unchanged—you only need to modify the Java code that executes the query.
Excuse our tiny dataset for this trivial example of pagination:

Query query = session.createQuery("from Product");
query.setFirstResult(1);
query.setMaxResults(2);
List results = query.list();
displayProductsList(results);

You can change the numbers around and play with the pagination. If you turn on SQL
logging, you can see which SQL commands Hibernate uses for pagination. For the open
source HSQLDB database, Hibernate uses top and limit.

CHAPTER 9 ■ SEARCHES AND QUERIES204

6935ch09_final.qxd 8/2/06 9:53 PM Page 204

If you only have one result in your HQL result set, Hibernate has a shortcut method for
obtaining just that object.

Obtaining a Unique Result
HQL’s Query interface provides a uniqueResult() method for obtaining just one object from
an HQL query. Although your query may only yield one object, you may also use the
uniqueResult() method with other result sets if you limit the results to just the first result.
You could use the setMaxResults() method discussed in the previous section. The
uniqueResult() method on the Query object returns a single object, or null if there are zero
results. If there is more than one result, the uniqueResult() method throws a
NonUniqueResultException.

The following short example demonstrates having a result set that would have included
more than one result, except that it was limited with the setMaxResults() method:

String hql = "from Product where price>25.0";
Query query = session.createQuery(hql);
query.setMaxResults(1);
Product product = (Product) query.uniqueResult();
//test for null here if needed

Unless your query returns one or zero results, the uniqueResult() method will throw a
NonUniqueResultException exception. Do not expect Hibernate just to pick off the first result
and return it—either set the maximum results of the HQL query to 1, or obtain the first object
from the result list.

Sorting Results with the order by Clause
To sort your HQL query’s results, you will need to use the order by clause. You can order the
results by any property on the objects in the result set: either ascending (asc) or descending
(desc). You can use ordering on more than one property in the query if you need to. A typical
HQL query for sorting results looks like this:

from Product p where p.price>25.0 order by p.price desc

If you wanted to sort by more than one property, you would just add the additional prop-
erties to the end of the order by clause, separated by commas. For instance, you could sort by
product price and the supplier’s name, as follows:

from Product p order by p.supplier.name asc, p.price asc

HQL is more straightforward for ordering than the equivalent approach using the Criteria
Query API.

Associations
Associations allow you to use more than one class in an HQL query, just as SQL allows you to use
joins between tables in a relational database. Add an association to an HQL query with the join
clause. Hibernate supports five different types of joins: inner join, cross join, left outer

CHAPTER 9 ■ SEARCHES AND QUERIES 205

6935ch09_final.qxd 8/2/06 9:53 PM Page 205

join, right outer join, and full outer join. If you use cross join, just specify both classes
in the from clause (from Product p, Supplier s). For the other joins, use a join clause after
the from clause. Specify the type of join, the object property to join on, and an alias for the
other class.

You can use inner join to obtain the supplier for each product, and then retrieve the
supplier name, product name, and product price, as so:

select s.name, p.name, p.price from Product p inner join p.supplier as s

You can retrieve the objects using similar syntax:

from Product p inner join p.supplier as s

We used aliases in these HQL statements to refer to the entities in our query expressions.
These are particularly important in queries with associations that refer to two different entities
with the same class—for instance, if we are doing a join from a table back to itself. Commonly,
these types of joins are used to organize tree data structures.

Notice that Hibernate does not return Object objects in the result set; instead, Hibernate
returns Object arrays in the results. You will have to access the contents of the Object arrays
to get the Supplier and the Product objects.

If you would like to start optimizing performance, you can ask Hibernate to fetch the
associated objects and collections for an object in one query. If you were using lazy loading
with Hibernate, the objects in the collection would not be initialized until you accessed them.
If you use fetch on a join in your query, you can ask Hibernate to retrieve the objects in the
collection at the time the query executes. Add the fetch keyword after the join in the query,
like so:

from Supplier s inner join fetch s.products as p

When you use fetch for a query like this, Hibernate will return only the Supplier objects,
not the Product objects. This is because you are specifying the join, so Hibernate knows which
objects to fetch (instead of using lazy loading). If you need to get the Product objects, you can
access them through the associated Supplier object. You cannot use the properties of the
Product objects in expressions in the where clause. Use of the fetch keyword overrides any
settings you have in the mapping file for object initialization.

Aggregate Methods
HQL supports a range of aggregate methods, similar to SQL. They work the same way in HQL
as in SQL, so you do not have to learn any specific Hibernate terminology. The difference is
that in HQL, aggregate methods apply to the properties of persistent objects. The count(...)
method returns the number of times the given column name appears in the result set. You
may use the count(*) syntax to count all the objects in the result set, or count(product.name)
to count the number of objects in the result set with a name property. Here is an example using
the count(*) method to count all products:

select count(*) from Product product

CHAPTER 9 ■ SEARCHES AND QUERIES206

6935ch09_final.qxd 8/2/06 9:53 PM Page 206

The distinct keyword only counts the unique values in the row set—for instance, if there
are 100 products, but 10 have the same price as another product in the results, then a select
count(distinct product.price) from Product product query would return 90. In our data-
base, the following query will return 2, one for each supplier:

select count(distinct product.supplier.name) from Product product

If we removed the distinct keyword, it would return 5, one for each product.
All of these queries return an Integer object in the list. You could use the uniqueResult()

method here to obtain the result.
The aggregate functions available through HQL include the following:

• avg(property name): The average of a property’s value

• count(property name or *): The number of times a property occurs in the results

• max(property name): The maximum value of the property values

• min(property name): The minimum value of the property values

• sum(property name): The sum total of the property values

If you have more than one aggregate method, the result set List will contain an Object
array with each of the aggregates you requested. Adding another aggregate to the select
clause is straightforward:

select min(product.price), max(product.price) from Product prodsuct

You can also combine these with other projection properties in the result set.

Bulk Updates and Deletes with HQL
Bulk updates are new to HQL with Hibernate 3, and deletes work differently in Hibernate 3 than
they did in Hibernate 2. The Query interface now contains a method called executeUpdate() for
executing HQL UPDATE or DELETE statements. The executeUpdate() method returns an int that
contains the number of rows affected by the update or delete, as follows:

public int executeUpdate() throws HibernateException

HQL updates look like you would expect them to, being based on SQL UPDATE statements.
Do not include an alias with the update; instead, put the set keyword right after the class name,
as follows:

String hql = "update Supplier set name = :newName ➥

where name = :name";

Query query = session.createQuery(hql);
query.setString("name","SuperCorp");
query.setString("newName","MegaCorp");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);

CHAPTER 9 ■ SEARCHES AND QUERIES 207

6935ch09_final.qxd 8/2/06 9:53 PM Page 207

//See the results of the update
query = session.createQuery("from Supplier");
List results = query.list();

After carrying out this query, any supplier previously named SuperCorp will be named
MegaCorp. You may use a where clause with updates to control which rows get updated, or you
may leave it off to update all rows. Notice that we printed out the number of rows affected by
the query. We also used named parameters in our HQL for this bulk update.

Bulk deletes work in a similar way. Use the delete from clause with the class name you
would like to delete from. Then use the where clause to narrow down which entries in the table
you would like to delete. Use the executeUpdate() method to execute deletes against the data-
base as well. Our code surrounding the HQL DELETE statement is basically the same—we use
named parameters, and we print out the number of rows affected by the delete:

String hql = "delete from Product where name = :name";
Query query = session.createQuery(hql);
query.setString("name","Mouse");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);

//See the results of the update
query = session.createQuery("from Product");
List results = query.list();

■Caution Using bulk updates and deletes in HQL works almost the same as in SQL, so keep in mind that
these are powerful and can erase the data in your tables if you make a mistake with the where clause.

Named Queries for HQL and SQL
One of Hibernate’s best features is the named query, in which your application can store its
HQL queries outside the application in the mapping file. This has many benefits for applica-
tion maintenance. The first benefit is that many objects can share queries—you could set up
static final strings on classes with the HQL queries, but Hibernate already provides a nice
facility for the same thing. The next benefit is that named queries could also contain native
SQL queries—the application calling the named query does not need to know if the named
query is SQL or HQL. This has enormous benefits for migrating SQL-based applications to
Hibernate. The last benefit is that you can provide your HQL and SQL queries in a configura-
tion file to your database administrators, who will probably find it easier to work with an
XML mapping file than with HQL statements embedded in Java code.

Add named queries in the appropriate Hibernate mapping file. HQL queries use the XML
<query> element, and SQL queries use the XML <sql-query> element. Both of these XML ele-
ments require a name attribute that uniquely identifies the query in the application. With one

CHAPTER 9 ■ SEARCHES AND QUERIES208

6935ch09_final.qxd 8/2/06 9:53 PM Page 208

simple HQL named query, and one simple SQL query that does the same thing, we have the
Hibernate mapping file shown in Listing 9-4: Product.hbm.xml.

Listing 9-4. Product.hbm.xml

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.hibernatebook.criteria">
<class name="Product">

<id name="id" type="int">
<generator class="native"/>

</id>

<property name="name" type="string"/>
<property name="description" type="string"/>
<property name="price" type="double"/>
<many-to-one name="supplier" class="Supplier" column="supplierId"/>

</class>

<query name="com.hibernatebook.criteria.Product.HQLpricing"><![CDATA[
select product.price from Product product where product.price > 25.0]]>

</query>
<sql-query name="com.hibernatebook.criteria.Product.SQLpricing">
<return-scalar column="price" type="double"/>
<![CDATA[
select product.price from Product as product where product.price > 25.0]]>

</sql-query>
</hibernate-mapping>

Notice that we embedded the SQL and HQL queries in CDATA regions. This protects our
SQL queries from interfering with the XML parser—we don’t have to worry about special char-
acters breaking the XML. For the native SQL query, we also had to specify a return type, so
Hibernate knows what type of result data to expect from the database. When you use HQL,
Hibernate handles that mapping behind the scenes, because it knows which objects went in.
With SQL, you have to specify the return types yourself. In this case, we used the <return-scalar>
XML element to define our return type as a column named price, with a type of double. Hiber-
nate converts the JDBC result set into an array of objects, just like the previous HQL query.
Functionally, they are identical. We discuss native SQL in more detail in the next section of
the chapter.

You may also specify the flush mode, whether the query is cacheable, the cache region,
the fetch size, and the timeout for the HQL and SQL queries. For the SQL query, you may addi-
tionally specify whether the SQL query is callable.

CHAPTER 9 ■ SEARCHES AND QUERIES 209

6935ch09_final.qxd 8/2/06 9:53 PM Page 209

Using Native SQL
Although you should probably use HQL whenever possible, Hibernate does provide a way to
use native SQL statements directly through Hibernate. One reason to use native SQL is that
your database supports some special features through its dialect of SQL that are not supported
in HQL. Another reason is that you may want to call stored procedures from your Hibernate
application. We discuss stored procedures and other database-specific integration solutions in
Appendix A. Rather than just providing an interface to the underlying JDBC connection, like
other Java ORM tools, Hibernate provides a way to define the entity (or join) that the query
uses. This makes integration with the rest of your ORM-oriented application easy.

You can modify your SQL statements to make them work with Hibernate’s ORM layer. You
do need to modify your SQL to include Hibernate aliases that correspond to objects or object
properties. You can specify all properties on an object with {objectname.*}, or you can specify
the aliases directly with {objectname.property}. Hibernate uses the mappings to translate your
object property names into their underlying SQL columns. This may not be the exact way you
expect Hibernate to work, so be aware that you do need to modify your SQL statements for full
ORM support. You will especially run into problems with native SQL on classes with subclasses—
be sure you understand how you mapped the inheritance across either a single table or multi-
ple tables, in order that you select the right properties off of the table.

Underlying Hibernate’s native SQL support is the org.hibernate.SQLQuery interface,
which extends the org.hibernate.Query interface already discussed. Your application will cre-
ate a native SQL query from the session with the createSQLQuery() method on the Session
interface.

public SQLQuery createSQLQuery(String queryString) throws HibernateException

After you pass a string containing the SQL query to the createSQLQuery() method, you
should associate the SQL result with an existing Hibernate entity, a join, or a scalar result.
The SQLQuery interface has addEntity(), addJoin(), and addScalar() methods. For the
entities and joins, you can specify a lock mode, which we discuss in Chapter 8. The
addEntity() methods take an alias argument and either a class name or an entity name.
The addJoin() methods take an alias argument and a path to join.

Using native SQL with scalar results is the simplest way to get started with native SQL.
Our Java code looks like this:

String sql = "select avg(product.price) as avgPrice from Product product";
SQLQuery query = session.createSQLQuery(sql);
query.addScalar("avgPrice",Hibernate.DOUBLE);
List results = query.list();

Because we did not specify any entity aliases, Hibernate executes exactly the same SQL
that we passed through:

select avg(product.price) as avgPrice from Product product

The SQL is regular SQL (we did not have to do any aliasing here). We created an SQLQuery
object, and then added a scalar mapping with the built-in double type (from the
org.hibernate._Hibernate class). We needed to map the avgPrice SQL alias to the object type.
The results are a List with one object—a Double.

CHAPTER 9 ■ SEARCHES AND QUERIES210

6935ch09_final.qxd 8/2/06 9:53 PM Page 210

A bit more complicated than the previous example is the native SQL that returns a result
set of objects. In this case, we will need to map an entity to the SQL query. The entity consists
of the alias we used for the object in the SQL query and its class. For this example, we used our
Supplier class:

String sql = "select {supplier.*} from Supplier supplier";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("supplier", Supplier.class);
List results = query.list();

Hibernate modifies the SQL and executes the following command against the database:

select Supplier.id as id0_, Supplier.name as name2_0_ from Supplier supplier

The special aliases allow Hibernate to map the database columns back to the object
properties.

Summary
HQL is a powerful object-oriented query language that provides the power of SQL while tak-
ing advantage of Hibernate’s object-relational mapping and caching. If you are porting an
existing application to Hibernate, you can use Hibernate’s native SQL facilities to execute
SQL against the database. The SQL functionality is also useful for executing SQL statements
that are specific to a given database and have no equivalents in HQL.

You may turn on SQL logging for Hibernate, and Hibernate will log the generated SQL
that it executes against the database. If you add a comment to your HQL query object, Hiber-
nate will display a comment in the log next to the SQL statement—this helps with tracing
SQL statements back to HQL in your application.

CHAPTER 9 ■ SEARCHES AND QUERIES 211

6935ch09_final.qxd 8/2/06 9:53 PM Page 211

6935ch09_final.qxd 8/2/06 9:53 PM Page 212

Advanced Queries
Using Criteria

Hibernate provides three different ways to retrieve data. We have already discussed HQL and
the use of native SQL queries—now we add criteria.

The Criteria Query API lets you build nested, structured query expressions in Java, pro-
viding a compile-time syntax-checking that is not possible with a query language like HQL or
SQL. The Criteria API also includes query by example (QBE) functionality—this lets you sup-
ply example objects that contain the properties you would like to retrieve instead of having
to spell the components of the query out step by step. It also includes projection and aggre-
gation methods, including counts.

In this chapter, we explore the use of the Criteria API using the sample database estab-
lished in the previous chapter.

Using the Criteria API
The Criteria API allows you to build up a criteria query object programmatically—the
org.hibernate.Criteria interface defines the available methods for one of these objects. The
Hibernate Session interface contains several createCriteria() methods. Pass the persistent
object’s class or its entity name to the createCriteria() method, and Hibernate will create a
Criteria object that returns instances of the persistence object’s class when your application
executes a criteria query.

The simplest example of a criteria query is one with no optional parameters or restric-
tions—the criteria query will simply return every object that corresponds to the class.

Criteria crit = session.createCriteria(Product.class);
List results = crit.list();

When you run this example with our sample data, you will get all objects that are
instances of the Product class—note that this includes any instances of the Software class
because they are derived from Product.

Moving on from this simple example, we will add constraints to our criteria queries so
we can winnow down the result set.

213

C H A P T E R 1 0

■ ■ ■

6935ch10_final.qxd 8/2/06 9:41 PM Page 213

Using Restrictions with Criteria
The Criteria API makes it easy to use restrictions in your queries to selectively retrieve objects;
for instance, your application could retrieve only products with a price over $30. You may add
these restrictions to a Criteria object with the add() method. The add() method takes an
org.hibernate.criterion.Criterion object that represents an individual restriction. You can
have more than one restriction for a criteria query.

Although you could create your own objects implementing the Criterion object, or extend
an existing Criterion object, we recommend that you use Hibernate’s built-in Criterion objects
from your application’s business logic. For instance, you could create your own factory class that
returns instances of Hibernate’s Criterion objects appropriately set up for your application’s
restrictions.

Use the factory methods on the org.hibernate.criterion.Restrictions class to obtain
instances of the Criterion objects. To retrieve objects that have a property value that equals
your restriction, use the eq() method on Restrictions, as follows:

public static SimpleExpression eq(String propertyName, Object value)

We would typically nest the eq() method in the add() method on the Criteria object.
Here is an example of how this would look if we were searching for products with the name
“Mouse”:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.eq("name","Mouse"));
List results = crit.list()

Next, we search for products that do not have the name “Mouse.” For this, we would use
the ne() method on the Restrictions class to obtain a not-equal restriction:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ne("name","Mouse"));
List results = crit.list();

■Tip You cannot use the not-equal restriction to retrieve records with a NULL value in the database for that
property (in SQL, and therefore in Hibernate, NULL represents the absence of data, and so cannot be com-
pared with data). If you need to retrieve objects with NULL properties, you will have to use the isNull()
restriction, which we discuss further on in the chapter. You can combine the two with an OR logical expres-
sion, which we also discuss later in the chapter.

Instead of searching for exact matches, we can also retrieve all objects that have a prop-
erty matching part of a given pattern. To do this, we need to create an SQL LIKE clause, with
either the like() or the ilike() method. The ilike() method is case-insensitive. In either
case, we have two different ways to call the method:

public static SimpleExpression like(String propertyName, Object value)

or

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA214

6935ch10_final.qxd 8/2/06 9:41 PM Page 214

public static SimpleExpression like(String propertyName,
String value,
MatchMode matchMode)

The first like() or ilike() method takes a pattern for matching. Use the % character as
a wildcard to match parts of the string, like so:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.like("name","Mou%"));
List results = crit.list();

The second like() or ilike() method uses an org.hibernate.criterion.MatchMode
object to specify how to match the specified value to the stored data. The MatchMode object
(a type-safe enumeration) has four different matches:

• ANYWHERE: Anyplace in the string

• END: The end of the string

• EXACT: An exact match

• START: The beginning of the string

Here is an example that uses the ilike() method to search for case-insensitive matches
at the end of the string:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ilike("name","browser", MatchMode.END));
List results = crit.list();

The isNull() and isNotNull() restrictions allow you to do a search for objects that have
(or do not have) null property values. This is easy to demonstrate:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.isNull("name"));
List results = crit.list();

Several of the restrictions are useful for doing math comparisons. The greater-than
comparison is gt(), the greater-than-or-equal-to comparison is ge(), the less-than com-
parison is lt(), and the less-than-or-equal-to comparison is le(). We can do a quick
retrieval of all products with prices over $25 like this:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

Moving on, we can start to do more complicated queries with the Criteria API. For exam-
ple, we can combine AND and OR restrictions in logical expressions. When you add more than
one constraint to a criteria query, it is interpreted as an AND, like so:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.add(Restrictions.like("name","K%"));
List results = crit.list();

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA 215

6935ch10_final.qxd 8/2/06 9:41 PM Page 215

If we want to have two restrictions that return objects that satisfy either or both of the
restrictions, we need to use the or() method on the Restrictions class, as follows:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
List results = crit.list();

The orExp logical expression that we have created here will be treated like any other crite-
rion. We can therefore add another restriction to the criteria:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description","blocks%"));
List results = crit.list();

If we wanted to create an OR expression with more than two different criteria, we would
use an org.hibernate.criterion.Disjunction object to represent a disjunction. You can
obtain this object from the disjunction() factory method on the Restrictions class. The
disjunction is more convenient than building a tree of OR expressions in code. To represent
an AND expression with more than two criteria, you can use the conjunction() method—
although you can easily just add those to the Criteria object. The conjunction is also more
convenient than building a tree of AND expressions in code. Here is an example that uses
the disjunction:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
Criterion desc = Restrictions.ilike("description","blocks%");
Disjunction disjunction = Restrictions.disjunction();
disjunction.add(price);
disjunction.add(name);
disjunction.add(desc);
crit.add(disjunction);
List results = crit.list();

The last type of restriction is the SQL restriction sqlRestriction(). This restriction allows
you to directly specify SQL in the Criteria API. This is useful if you need to use SQL clauses that
Hibernate does not support through the Criteria API. Your application’s code does not need to
know the name of the table your class uses—use {alias} to signify the class’s table, as follows:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.sqlRestriction("{alias}.name like 'Mou%'"));
List results = crit.list()

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA216

6935ch10_final.qxd 8/2/06 9:41 PM Page 216

The other two sqlRestriction() methods permit you to pass JDBC parameters and val-
ues into the SQL statement. Use the standard JDBC parameter placeholder (?) in your SQL
fragment.

Paging Through the Result Set
One common application pattern that criteria can address is pagination through the result
set of a database query. When we say pagination, we mean an interface in which the user
sees part of the result set at a time, with navigation to go forward and backward through the
results. A naive pagination implementation might load the entire result set into memory for
each navigation action, and would usually lead to atrocious performance. Both of us have
worked on improving performance for separate projects suffering from exactly this prob-
lem. The problem appeared late in testing because the sample dataset that developers were
working with was trivial, and they did not notice any performance problems until the first
test data load.

If you are programming directly to the database, you will typically use proprietary database
SQL or database cursors to support paging. Hibernate abstracts this away for you—behind the
scenes, Hibernate uses the appropriate method for your database.

There are two methods on the Criteria interface for paging: setFirstResult() and
setMaxResults(). The setFirstResult() method takes an integer that represents the first
row in your result set, starting with row 0. You can tell Hibernate to retrieve a fixed number
of objects with the setMaxResults() method. Using both of these together, we can construct
a paging component in our web or Swing application. We have a very small dataset in our
sample application, so here is an admittedly trivial example:

Criteria crit = session.createCriteria(Product.class);
crit.setFirstResult(1);
crit.setMaxResults(2);
List results = crit.list();

As you can see, this makes paging through the result set easy. You can increase the first
result you return (for example, from 1, to 21, to 41, etc.) to page through the result set. If you
only have one result in your result set, Hibernate has a shortcut method for obtaining just
that object.

Obtaining a Unique Result
Sometimes you know you are only going to return zero or one objects from a given query.
This could be because you are calculating an aggregate (like COUNT, which we discuss later),
or because your restrictions naturally lead to a unique result—when selecting upon a prop-
erty under a unique constraint, for example. You may also limit the results of any result set
to just the first result, using the setMaxResults() method discussed earlier. In any of these
circumstances, if you want obtain a single Object reference instead of a List, the
uniqueResult() method on the Criteria object returns an object or null. If there is more
than one result, the uniqueResult() method throws a HibernateException.

The following short example demonstrates having a result set that would have included
more than one result, except that it was limited with the setMaxResults() method:

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA 217

6935ch10_final.qxd 8/2/06 9:41 PM Page 217

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
crit.setMaxResults(1);
Product product = (Product) crit.uniqueResult();

Again, we stress that you need to make sure that your query only returns one or zero
results if you use the uniqueResult() method. Otherwise, Hibernate will throw a
NonUniqueResultException exception, which may not be what you would expect—Hibernate
does not just pick the first result and return it.

Sorting the Query’s Results
Sorting the query’s results works much the same way with criteria as it would with HQL or
SQL. The Criteria API provides the org.hibernate.criterion.Order class to sort your result
set in either ascending or descending order, according to one of your object’s properties.

Create an Order object with either of the two static factory methods on the Order class:
asc() for ascending or desc() for descending. Both methods take the name of the property as
their only argument. After you create an Order, use the addOrder() method on the Criteria
object to add it to the query.

This example demonstrates how you would use the Order class:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder(Order.desc("price"));
List results = crit.list();

You may add more than one Order object to the Criteria object. Hibernate will pass
them through to the underlying SQL query. Your results will be sorted by the first order,
then any identical matches within the first sort will be sorted by the second order, and so
on. Beneath the covers, Hibernate passes this on to an SQL ORDER BY clause after substitut-
ing the proper database column name for the property.

Associations
To add a restriction on a class that is associated with your criteria’s class, you will need to
create another Criteria object. Pass the property name of the associated class to the
createCriteria() method, and you will have another Criteria object. You can get the
results from either Criteria object, although you should pick one style and be consistent
for readability’s sake. We find that getting the results from the top-level Criteria object
(the one that takes a class as a parameter) makes it clear what type of object is expected in
the results.

The association works going from one-to-many as well as from many-to-one. First, we
will demonstrate how to use one-to-many associations to obtain suppliers who sell products
with a price over $25. Notice that we create a new Criteria object for the products property,
add restrictions to the products’ criteria we just created, and then obtain the results from the
supplier Criteria object:

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA218

6935ch10_final.qxd 8/2/06 9:41 PM Page 218

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

Going the other way, we obtain all the products from the supplier MegaInc using many-
to-one associations:

Criteria crit = session.createCriteria(Product.class);
Criteria suppCrit = crit.createCriteria("supplier");
suppCrit.add(Restrictions.eq("name","MegaInc"));
List results = crit.list();

Although we can use either Criteria object to obtain the results, it makes a difference
which criteria we use for ordering the results. In the following example, we are ordering the
supplier results by the supplier names:

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder(Order.desc("name"));
List results = prdCrit.list();

If we wanted to sort the suppliers by the descending price of their products, we would use
the following line of code. This code would have to replace the previous addOrder() call on the
supplier Criteria object.

prdCrit.addOrder(Order.desc("price"));

Although the products are not in the result set, SQL still allows you to order by those results.
If you get mixed up with which Criteria object you are using and pass the wrong property name
for the sort-by order, Hibernate will throw an exception.

Distinct Results
If you would like to work with distinct results from a criteria query, Hibernate provides
a result transformer for distinct entities, org.hibernate.transform.
DistinctRootEntityResultTransformer, which ensures that no duplicates will be in your
query’s result set. Rather than using SELECT DISTINCT with SQL, the distinct result transformer
compares each of your results using their default hashCode() methods, and only adds those
results with unique hash codes to your result set. This may or may not be the result you would
expect from an otherwise equivalent SQL DISTINCT query, so be careful with this. An additional
performance note: the comparison is done in Hibernate’s Java code, not at the database, so
non-unique results will still be transported across the network.

Projections and Aggregates
Instead of working with objects from the result set, you can treat the results from the result set
as a set of rows and columns. This is similar to how you would use data from a SELECT query
with JDBC; also, Hibernate supports properties, aggregate functions, and the GROUP BY clause.

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA 219

6935ch10_final.qxd 8/2/06 9:41 PM Page 219

To use projections, start by getting the org.hibernate.criterion.Projection object you
need from the org.hibernate.criterion.Projections factory class. The Projections class is
similar to the Restrictions class in that it provides several static factory methods for obtain-
ing Projection instances. After you get a Projection object, add it to your Criteria object with
the setProjection() method. When the Criteria object executes, the list contains object ref-
erences that you can cast to the appropriate type.

The row-counting functionality provides a simple example of applying projections. The
code looks similar to the restrictions examples we were working with earlier in the chapter:

Criteria crit = session.createCriteria(Product.class);
crit.setProjection(Projections.rowCount());
List results = crit.list();

The results list will contain one object, an Integer that contains the results of executing
the COUNT SQL statement. Other aggregate functions available through the Projections factory
class include the following:

• avg(String propertyName): Gives the average of a property’s value

• count(String propertyName): Counts the number of times a property occurs

• countDistinct(String propertyName): Counts the number of unique values the
property contains

• max(String propertyName): Calculates the maximum value of the property values

• min(String propertyName): Calculates the minimum value of the property values

• sum(String propertyName): Calculates the sum total of the property values

We can apply more than one projection to a given Criteria object. To add multiple pro-
jections, get a projection list from the projectionList() method on the Projections class. The
org.hibernate.criterion.ProjectionList object has an add() method that takes a Projection
object. You can pass the projections list to the setProjection() method on the Criteria object
because ProjectionList implements the Projection interface. The following example demon-
strates some of the aggregate functions, along with the projection list:

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.max("price"));
projList.add(Projections.min("price"));
projList.add(Projections.avg("price"));
projList.add(Projections.countDistinct("description"));
crit.setProjection(projList);
List results = crit.list();

When you execute multiple aggregate projections, you get a List with an Object array as
the first element. The Object array contains all of your values, in order.

Another use of projections is to retrieve individual properties, rather than entities. For
instance, we can retrieve just the name and description from our product table, instead of
faulting the classes into memory. Use the property() method on the Projections class to

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA220

6935ch10_final.qxd 8/2/06 9:41 PM Page 220

create a Projection for a property. When you execute this form of query, the list() method
returns a List of Object arrays. Each Object array contains the projected properties for that
row. The following example returns just the contents of the name and description columns
from the Product data. Remember, Hibernate is polymorphic, so this also returns the name
and description from the Software objects that inherit from Product.

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.property("name"));
projList.add(Projections.property("description"));
crit.setProjection(projList);
List results = crit.list();

Use this query style when you want to cut down on network traffic between your appli-
cation servers and your database servers. For instance, if your table has a large number of
columns, this can slim down your results. In other cases, you may have a large set of joins
that would return a very wide result set, but you are only interested in a few columns. Lastly,
if your clients have limited memory, this can save you trouble with large datasets. But make
sure you don’t have to retrieve additional columns for the entire result set later, or your opti-
mizations may actually decrease performance.

You can group your results (using SQL’s GROUP BY clause) with the groupProperty projec-
tion. The following example groups the products by name and price:

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.groupProperty("name"));
projList.add(Projections.groupProperty("price"));
crit.setProjection(projList);
List results = crit.list();

As you can see, projections open up aggregates to the Criteria API, which means that
developers do not have to drop into HQL for aggregates. Projections offer a way to work with
data that is closer to the JDBC result set style, which may be appropriate for some parts of
your application.

Query By Example (QBE)
In this section, because of the confusing terminology, we will refer to excerpts from our
demonstration code as “samples” rather than “examples,” reserving “example” for its peculiar
technical meaning in the context of QBE.

In QBE, instead of programmatically building a Criteria object with Criterion objects
and logical expressions, you can partially populate an instance of the object. You use this
instance as a template and have Hibernate build the criteria for you based upon its values.
This keeps your code clean and makes your project easier to test. The org.hibernate.
criterion.Example class contains the QBE functionality. Note that the Example class imple-
ments the Criterion interface, so you can use it like any other restriction on a criteria query.

For instance, if we have a user database, we can construct an instance of a user object,
set the property values for type and creation date, and then use the Criteria API to run a

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA 221

6935ch10_final.qxd 8/2/06 9:41 PM Page 221

QBE query. Hibernate will return a result set containing all user objects that match the property
values that were set. Behind the scenes, Hibernate inspects the Example object and constructs
an SQL fragment that corresponds to the properties on the Example object.

To use QBE, we need to construct an Example object first. Then we need to create an
instance of the Example object, using the static create() method on the Example class. The
create() method takes the Example object as its argument. You add the Example object to a
Criteria object just like any other Criterion object.

The following basic example searches for suppliers that match the name on the example
Supplier object:

Criteria crit = session.createCriteria(Supplier.class);
Supplier supplier = new Supplier();
supplier.setName("MegaInc");
crit.add(Example.create(supplier));
List results = crit.list();

When Hibernate translates our Example object into an SQL query, all the properties on
our Example objects get examined. We can tell Hibernate which properties to ignore; the
default is to ignore null-valued properties. To search our products or software in the sample
database with QBE, we need to either specify a price or tell Hibernate to ignore properties
with a value of zero, because we used a double primitive for storage instead of a Double
object. The double primitive initializes to zero, while a Double would have been null; and so,
left to its own devices, the QBE logic will assume that we are specifically searching for prices
of zero, whereas we want it to ignore this default value.

We can make the Hibernate Example object exclude zero-valued properties with the
excludeZeroes() method. We can exclude properties by name with the excludeProperty()
method, or exclude nothing (compare for null values and zeroes exactly as they appear in the
Example object) with the excludeNone() method. This sample applies the excludeZeroes()
method to ignore the default zero prices:

Criteria crit = session.createCriteria(Product.class);
Product exampleProduct = new Product();
exampleProduct.setName("Mouse");
Example example = Example.create(exampleProduct);
example.excludeZeroes();
crit.add(example);
List results = crit.list();

Other options on the Example object include ignoring the case for strings with the
ignoreCase() method, and enabling use of SQL’s LIKE for comparing strings, instead of just
using equals().

We can also use associations for QBE. In the following sample, we create two examples:
one for the product and one for the supplier. We use the technique explained in the “Associa-
tions” section of this chapter to retrieve objects that match both criteria.

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA222

6935ch10_final.qxd 8/2/06 9:41 PM Page 222

Criteria prdCrit = session.createCriteria(Product.class);
Product product = new Product();
product.setName("M%");
Example prdExample = Example.create(product);
prdExample.excludeProperty("price");
prdExample.enableLike();
Criteria suppCrit = prdCrit.createCriteria("supplier");
Supplier supplier = new Supplier();
supplier.setName("SuperCorp");
suppCrit.add(Example.create(supplier));
prdCrit.add(prdExample);
List results = prdCrit.list();

We also ignore the price property for our product, and we use LIKE for object comparison,
instead of equals.

The QBE API works best for searches in which you are building the search from user input.
The Hibernate team recommends using QBE for advanced searches with multiple fields, because
it’s easier to set values on business objects than to manipulate restrictions with the Criteria API.

Summary
Using the Criteria API is an excellent way to get started developing with HQL. The developers
of Hibernate have provided a clean API for adding restrictions to queries with Java objects.
Although HQL isn’t too difficult to learn, some developers prefer the Criteria Query API, as it
offers compile-time syntax checking—although column names and other schema-dependent
information cannot be checked until run time.

In the next chapter, we discuss the use of Hibernate filters to restrict the range of data
against which queries are applied.

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA 223

6935ch10_final.qxd 8/2/06 9:41 PM Page 223

6935ch10_final.qxd 8/2/06 9:41 PM Page 224

Filtering the Results
of Searches

Your application will often need to process only a subset of the data in the database tables.
In these cases, you can create a Hibernate filter to eliminate the unwanted data. Filters pro-
vide a way for your application to limit the results of a query to data that passes the filter’s
criteria. Filters are not a new concept—you can achieve much the same effect using SQL
database views—but Hibernate offers a centralized management system for them.

Unlike database views, Hibernate filters can be enabled or disabled during a Hibernate
session. In addition, Hibernate filters can be parameterized, which is particularly useful when
you are building applications on top of Hibernate that use security roles or personalization.

When to Use Filters
As an example, consider a web application that manages user profiles. Currently, your appli-
cation presents a list of all users through a single web interface, but you receive a change
request from your end user to manage active users and expired users separately. For this
example, assume that the status is stored as a column on the user table.

One way to solve this problem is to rewrite every HQL SELECT query in your application,
adding a WHERE clause that restricts the result by the user’s status. Depending on how you built
your application, this could be an easy undertaking or it could be complex, but you still end
up modifying code that you have already tested thoroughly, potentially changing it in many
different places.

With Hibernate 3, you can create a filter restriction for the user status. When your end
user selects the user type (active or expired), your application activates the user status filter
(with the proper status) for the end user’s Hibernate session. Now, any SELECT queries will
return the correct subset of results, and the relevant code for the user status is limited to two
locations: the Hibernate session and the user status filter.

The advantage of using Hibernate filters is that you can programmatically turn filters on
or off in your application code, and your filters are defined in your Hibernate mapping docu-
ments for easy maintainability. The major disadvantage of filters is that you cannot create new
filters at run time. Instead, any filters your application requires need to be specified in the
proper Hibernate mapping document. Although this may sound somewhat limiting, the fact
that filters can be parameterized makes them pretty flexible. For our user status filter example,
only one filter would need to be defined in the mapping document (albeit in two parts). That

225

C H A P T E R 1 1

■ ■ ■

6935ch11_final.qxd 8/2/06 9:39 PM Page 225

filter would specify that the status column must match a named parameter. You would not
need to define the possible values of the status column in the Hibernate mapping docu-
ment—the application can specify those parameters at run time.

Although it is certainly possible to write applications with Hibernate that do not use fil-
ters, we find them to be an excellent solution to certain types of problems—notably security
and personalization.

Defining Filters
Your first step is to define filters in your application’s Hibernate mapping documents, using
the <filter-def> XML element. These filter definitions must contain the name of the filter
and the names and types of any filter parameters. Specify filter parameters with the
<filter-param> XML element. Filter parameters are similar to named parameters for HQL
queries. Both require a : before the parameter name. Here is an excerpt from a mapping docu-
ment with a filter called latePaymentFilter defined:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class ...

</class>
<filter-def name="latePaymentFilter">
<filter-param name="dueDate" type="date"/>

</filter-def>
</hibernate-mapping>

Once you have created the filter definitions, you need to attach the filters to class or col-
lection mapping elements. You can attach a single filter to more than one class or collection.
To do this, you add a <filter> XML element to each class and/or collection. The <filter>
XML element has two attributes: name and condition. The name references a filter definition
(for instance: latePaymentFilter). The condition represents a WHERE clause in HQL. Here’s an
example:

<class ...
<filter name="latePaymentFilter" condition=":dueDate = paymentDate"/>

</class>

Each <filter> XML element must correspond to a <filter-def> element. You may have
more than one filter for each filter definition, and each class can have more than one filter.
This is a little confusing—the extra level of abstraction allows you to define all the filter
parameters in one place and then refer to them in the individual filter conditions.

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES226

6935ch11_final.qxd 8/2/06 9:39 PM Page 226

Using Filters in Your Application
Your application programmatically determines which filters to activate or deactivate for a
given Hibernate session. Each session can have a different set of filters with different parame-
ter values. By default, sessions do not have any active filters—you must explicitly enable filters
programmatically for each session. The Session interface contains several methods for work-
ing with filters, as follows:

• public Filter enableFilter(String filterName)

• public Filter getEnabledFilter(String filterName)

• public void disableFilter(String filterName)

These are pretty self-explanatory—the enableFilter(String filterName) method activates
the specified filter, the disableFilter(String filterName) method deactivates the method, and
if you have already activated a named filter, getEnabledFilter(String filterName) retrieves that
filter.

The org.hibernate.Filter interface has six methods. You are unlikely to use validate();
Hibernate uses that method when it processes the filters. The other five methods are as follows:

• public Filter setParameter(String name, Object value)

• public Filter setParameterList(String name, Collection values)

• public Filter setParameterList(String name, Object[] values)

• public String getName()

• public FilterDefinition getFilterDefinition()

The setParameter() method is the most useful. You can substitute any Java object for the
parameter, although its type should match the type you specified for the parameter when you
defined the filter. The two setParameterList() methods are useful for using IN clauses in your fil-
ters. If you want to use BETWEEN clauses, use two different filter parameters with different names.
Finally, the getFilterDefinition() method allows you to retrieve a FilterDefinition object rep-
resenting the filter metadata (its name, its parameters’ names, and the parameter types).

Once you have enabled a particular filter on the session, you do not have to do anything
else to your application to take advantage of filters, as we demonstrate in the following example.

A Basic Filtering Example
Because filters are very straightforward, a basic example allows us to demonstrate most of the
filter functionality, including activating filters and defining filters in mapping documents.

In the following Hibernate XML mapping document (User.hbm.xml), we created a filter
definition called activatedFilter. The parameters for the filter must be specified with
<filter-param> XML elements (as shown in Listing 11-1), which use the <activatedParam>
XML element. You need to specify a type for the filter parameter so that Hibernate knows how

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES 227

6935ch11_final.qxd 8/2/06 9:39 PM Page 227

to map values to parameters. Once you have defined your filter, you need to attach the filter
definition to a class. At the end of our User class definition, we specify that it uses a filter
named activatedFilter. We then need to set a condition corresponding to an HQL WHERE
clause for the attached filter. In our case, we used :activatedParam = activated, where
:activatedParam is the named parameter specified on the filter definition, and activated is
the column name from the user table. You should ensure that the named parameter goes on
the left-hand side so that Hibernate’s generated SQL doesn’t interfere with any joins.

Listing 11-1. Hibernate XML Mapping for User

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="com.hibernatebook.filters.User">
<id name="id" type="int">
<generator class="native"/>

</id>

<property name="username" type="string" length="32"/>
<property name="activated" type="boolean"/>
<filter name="activatedFilter" condition=":activatedParam = activated"/>

</class>
<filter-def name="activatedFilter">
<filter-param name="activatedParam" type="boolean"/>

</filter-def>
</hibernate-mapping>

With the filter definition created and attached to a class with a suitable condition, we
need to activate the filter. The next class, SimpleFilterExample, inserts several user records
into the database, and then immediately displays them to the screen. The class uses a very
simple HQL query (from User) to obtain the result set from Hibernate. The displayUsers()
method writes the usernames and activation status out to the console. Before you have
enabled any filters on the database, this method will return the full list of users. Once you
have enabled the first filter (activatedFilter) to show only activated users, call the same
displayUsers() method—the results of the query are the same as if you had added a WHERE
clause containing an "activated=true" clause. You can just as easily change the filter’s
parameter value to show inactive users, as shown in Listing 11-2.

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES228

6935ch11_final.qxd 8/2/06 9:39 PM Page 228

Listing 11-2. Invoking Filters from Code

package com.hibernatebook.filters;

import java.util.Iterator;

import org.hibernate.Filter;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

public class SimpleFilterExample {
public static void main (String args[]) {

SessionFactory factory =
new Configuration().configure().buildSessionFactory();

Session session = factory.openSession();

//insert the users
insertUser("ray",true,session);
insertUser("jason",true,session);
insertUser("beth",false,session);
insertUser("judy",false,session);
insertUser("rob",false,session);

//Show all users
System.out.println("===ALL USERS===");
displayUsers(session);

//Show activated users
Filter filter = session.enableFilter("activatedFilter");
filter.setParameter("activatedParam",new Boolean(true));
System.out.println("===ACTIVATED USERS===");
displayUsers(session);

//Show nonactivated users
filter.setParameter("activatedParam",new Boolean(false));
System.out.println("===NON-ACTIVATED USERS===");
displayUsers(session);

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES 229

6935ch11_final.qxd 8/2/06 9:39 PM Page 229

session.close();
}

public static void displayUsers(Session session) {
session.beginTransaction();
Query query = session.createQuery("from User");
Iterator results = query.iterate();
while (results.hasNext())
{

User user = (User) results.next();
System.out.print(user.getUsername() + " is ");
if (user.isActivated())
{

System.out.println("activated.");
}
else
{

System.out.println("not activated.");
}

}

session.getTransaction().commit();
}

public static void insertUser(String name, boolean activated, Session session) {
session.beginTransaction();

User user = new User();
user.setUsername(name);
user.setActivated(activated);
session.save(user);

session.getTransaction().commit();
}

}

The output of SimpleFilterExample is as follows:

===ALL USERS===
ray is activated.
jason is activated.
beth is not activated.
judy is not activated.
rob is not activated.

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES230

6935ch11_final.qxd 8/2/06 9:39 PM Page 230

===ACTIVATED USERS===
ray is activated.
jason is activated.
===NON-ACTIVATED USERS===
beth is not activated.
judy is not activated.
rob is not activated.

Listing 11-3 gives the User class used for this chapter’s examples. The only fields it con-
tains are id, username, and activated.

Listing 11-3. The Source Code for the User Class

package com.hibernatebook.filters;

public class User {
private int id;
private String username;
private boolean activated;

public boolean isActivated() {
return activated;

}

public void setActivated(boolean activated) {
this.activated = activated;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getUsername() {
return username;

}

public void setUsername(String username) {
this.username = username;

}
}

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES 231

6935ch11_final.qxd 8/2/06 9:39 PM Page 231

Because filters do not use any database-specific functionality beyond the Hibernate config-
uration, you should not encounter any difficulty running this example on databases other than
HSQLDB. The Hibernate configuration file defines the database configuration and connection
information, along with the XML mapping document for the User class (see Listing 11-4).

Listing 11-4. The Hibernate XML Configuration File for the Example

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property name="hibernate.connection.driver_class">
org.hsqldb.jdbcDriver

</property>
<property name="hibernate.connection.url">

jdbc:hsqldb:file:filterdb;SHUTDOWN=true
</property>
<property name="hibernate.connection.username">sa</property>
<property name="hibernate.connection.password"></property>
<property name="hibernate.connection.pool_size">0</property>
<property name="dialect">

org.hibernate.dialect.HSQLDialect
</property>

<!-- Mapping files -->
<mapping resource="com/hibernatebook/filters/User.hbm.xml"/>

</session-factory>
</hibernate-configuration>

The source code for this chapter includes the schema we used for the HSQL database to
create the table for the filterdb database.

Summary
Filters are a useful way to separate some database concerns from the rest of your code. A set
of filters can cut back on the complexity of the HQL queries used in the rest of your applica-
tion, at the expense of some runtime flexibility. Instead of using views (which must be created
at the database level), your applications can take advantage of dynamic filters that can be acti-
vated as and when they are required.

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES232

6935ch11_final.qxd 8/2/06 9:39 PM Page 232

More Advanced Features

In this appendix, we discuss some of the features that, strictly speaking, lie outside the scope
of this book, but that you should be aware of if you go on to use Hibernate in more depth.

EJB 3 and the EntityManager
The third version of the Enterprise Java Beans specification, generally known as EJB 3, has
recently been finalized. Among other features, EJB 3 includes a standard ORM technology that
was significantly influenced by the design of Hibernate.

You encountered this close relationship in Chapter 6 when we discussed Hibernate’s use
of the EJB 3 annotations for creating entity mappings. Annotations can be used throughout
your EJB 3 applications to denote various settings. They are also used to mark for injection of
resources from the container in a manner very like that of Spring’s dependency injection (see
Appendix C). HQL, which was discussed in Chapter 9, is very similar to the EJB QL used in
EJB 3 environments—generally speaking, your HQL queries can be used as EJB QL queries
without change.

Given these similarities, a Hibernate application can be converted into a portable EJB 3
application with surprisingly few changes. EJB 3 now supports both J2SE environments and
those hosted within J2EE application servers; so even a stand-alone application can be writ-
ten to take advantage of the EJB 3 features.

The standard way to access the ORM components of an EJB 3 application is through the
EntityManager. The Hibernate team provides appropriate libraries for download on their
EntityManager site at http://entitymanager.hibernate.org.

The EntityManager is configured through a standard file called persistence.xml, which
must be provided in a META-INF directory accessible from the classpath (or, in a J2EE environ-
ment, from the root of the deployed archive). This file serves the same purpose as a conventional
Hibernate configuration file (hibernate.cfg.xml), although its syntax is somewhat different. An
example file is given in Listing A-1.

Listing A-1. An EJB 3 persistence.xml Configuration File

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

233

A P P E N D I X A

■ ■ ■

6935appA_final.qxd 8/2/06 9:18 PM Page 233

<persistence-unit name="sampleManager" transaction-type="RESOURCE_LOCAL">
<class>com.hibernatebook.advanced.Sample</class>
<properties>

<property name="hibernate.connection.driver_class"
value="org.hsqldb.jdbcDriver"/>

<property name="hibernate.connection.url"
value="jdbc:hsqldb:file:/advanced/db/advanceddb;SHUTDOWN=true"/>

<property name="hibernate.connection.username" value="sa"/>
<property name="hibernate.connection.password" value=""/>
<property name="hibernate.connection.pool_size" value="0"/>
<property name="hibernate.show_sql" value="false"/>
<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>
</properties>

</persistence-unit>
</persistence>

The configuration file can contain multiple named <persistence-unit> elements, each
corresponding to a different configuration of the ORM environment. In the example in
Listing A-1, we have created a single annotation-mapped entity. The <properties> element
then configures the implementation-specific (i.e., Hibernate-specific) properties. In
Listing A-1, we have configured a database connection and dialect. When configuring a J2EE
environment, the connection would usually be provided through generic elements of the
persistence unit; Listing A-2 shows a configuration that takes advantage of this approach.

Listing A-2. An EJB 3 persistence.xml Configuration File Using a JTA Data Source

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
<persistence-unit name="sampleManager" transaction-type="JTA">

<jta-data-source>java:comp/env/jdbc/advanced</jta-data-source>
<class>com.hibernatebook.advanced.Sample</class>
<properties>

<property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>

</properties>
</persistence-unit>

</persistence>

Listing A-2 shows that the configuration file requires very little Hibernate-specific infor-
mation. In a J2EE environment, it is possible at deployment time to substitute alternative
EJB 3 providers for the providers indicated in the application’s metadata.

In a J2SE environment, the configuration information is accessed by creating an
EntityManagerFactory class by calling the createEntityManagerFactory() method of the
Persistence class, with the configured name of the persistence unit (shown in bold in

APPENDIX A ■ MORE ADVANCED FEATURES234

6935appA_final.qxd 8/2/06 9:18 PM Page 234

Listings A-1 and A-2) containing the appropriate configuration information. From the
EntityManagerFactory class, you can request EntityManager instances that are used to access
the entities. You have probably already spotted that the EJB 3 Persistence class corresponds
roughly to Configuration, that EntityManagerFactory is a dead ringer for SessionFactory, and
that EntityManager is the analog of Session.

The example code in Listing A-3 pushes this point home. The EntityManager instance is
used in a very similar way to the Session class shown throughout this book (although some of
the method names are slightly different—persist() in this example corresponds to Session’s
save() method).

Listing A-3. Using EJB 3 Persistence in J2SE Code

package com.hibernatebook.advanced;

import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.Query;

public class Ejb3Example {
@SuppressWarnings("unchecked")
public static void main(String[] args) {

EntityManagerFactory factory =
Persistence.createEntityManagerFactory("sampleManager");

EntityManager manager = factory.createEntityManager();

manager.getTransaction().begin();
manager.persist(new Sample("FAQ"));
manager.persist(new Sample("RTFM"));
manager.persist(new Sample("PDQ"));
manager.persist(new Sample("ASAP"));
manager.getTransaction().commit();

Query query = manager.createQuery("from Sample");

manager.getTransaction().begin();
List<Sample> list = (List<Sample>)query.getResultList();
manager.getTransaction().commit();

for(Sample sample : list) {
System.out.println(sample.getContent());

}

APPENDIX A ■ MORE ADVANCED FEATURES 235

6935appA_final.qxd 8/2/06 9:18 PM Page 235

manager.close();
factory.close();

}
}

While the configuration of an EJB 3 application server falls well outside the scope of this
book (which is a shame, because the topic is interesting—see Pro EJB: Java Persistence API, by
Mike Keith and Merrick Schincariol (Apress, 2006), for a good introduction to the subject), the
use of an EntityManager deployed into an EJB 3 application server is straightforward. Typically
in such an environment, the container manages the EntityManager. Listing A-4 demonstrates
how to obtain a reference to an EntityManager in such an environment—only very simple
changes would be necessary in Listing A-3 to support this. Note that in this environment,
there is no need to interact with the EntityManagerFactory—the container manages the
appropriate interaction with the factory in a way that is transparent to the user code.

Listing A-4. Obtaining an EntityManager from the Container by Injection

public class Ejb3Example {
@PersistenceContext(unitName="sampleManager",type=EXTENDED)
EntityManager manager;

// …
}

As Listing A-4 demonstrates, the combination of container-managed EntityManagers, anno-
tations, and resource injection makes the acquisition of an EntityManager object trivially simple
(and remember, the EntityManager is essentially the same as a Hibernate Session object).

Hibernate provides a couple of additional features to facilitate the transition of
Hibernate 3 code to EJB 3. Where your application uses a Configuration (or an
AnnotationConfiguration) object to programmatically configure the Hibernate application,
there is now an alternative Ejb3Configuration class that can be used in a similar manner to
provide the configuration information for the EJB 3 objects without the need for a
configuration.xml file.

The <jb3configuration> element of the Hibernate Tools Ant task conversely allows the
configuration of the tasks to be drawn from the classpath’s META-INF/configuration.xml file,
instead of from an explicitly identified Hibernate configuration or properties file.

Managed Versioning and Optimistic Locking
While we have saved versioning for this appendix’s discussion of advanced features, it is
actually quite straightforward to understand and apply. Consider the following scenario:

• Client A loads and edits a record.

• Client B loads and edits the same record.

• Client A commits its edited record data.

• Client B commits its differently edited record data.

While the scenario is simple, the problems it presents are not. If Client A establishes
a transaction, then Client B may not be able to load and edit the same record. Yet in a web

APPENDIX A ■ MORE ADVANCED FEATURES236

6935appA_final.qxd 8/2/06 9:18 PM Page 236

environment, it is not unlikely that Client A will close a browser window on the open record,
never committing or canceling the transaction, so that the record remains locked until the
session times out. Clearly this is not a satisfactory solution. Usually, you will not want to
permit the alternative scenario, in which no locking is used, and the last person to save a
record wins!

The solution, versioning, is essentially a type of optimistic locking (see Chapter 8).
When any changes to an entity are stored, a version column is updated to reflect the fact
that the entity has changed. When a subsequent user tries to commit changes to the same
entity, the original version number will be compared against the current value—if they dif-
fer, the commit will be rejected.

The Hibernate/EJB 3 annotation mappings and the Hibernate XML-based mappings both
provide a simple syntax for indicating which field should be used for storing the managed ver-
sion information. The annotation for this field is shown in Listing A-5.

Listing A-5. Marking the Version Attribute Using Annotations

@Version
protected int getVersionNum() {

return versionNum;
}

The default optimistic locking strategy for Hibernate is versioning, so if you provide a
<version> element in your XML configuration, this will be used as long as you have enabled
dynamic updates (as shown in Listing A-6).

Listing A-6. Marking the Version Attribute Using XML Mappings

<class dynamic-update="version" optimistic-lock="version" ... >
...
<version name="versionNum"/>

</class>

The version attribute is defined in a very similar way to the normal property attribute
configuration. The version can be of type long, integer, short, timestamp, or calendar (note
that using the <timestamp ... /> element is an equivalent alternative to the use of the
<version type="timestamp" ... /> element syntax).

The <class> element’s optimistic-lock attribute can be used to override the default
versioning-based optimistic locking strategy. You can disable it entirely (despite the pres-
ence of a version field) using a value of none. You can explicitly state that versioning should
be used with a value of version. You can elect to use dirty checking, with the dirty and all
options.

If you elect not to use versioning, dirty checking offers an alternative form of optimistic
locking. Here, the values of the entities are themselves checked to see if they have changed
since the entity was originally obtained. As with versioning-based optimistic locking, the
check against the database is carried out when the changes are committed. If an optimistic
lock type of dirty is selected, then only those fields that have changed since the persistent
entity was obtained will be checked (the Session keeps track of the appropriate state informa-
tion). If an optimistic lock type of all is selected, then all the fields comprising the entity will

APPENDIX A ■ MORE ADVANCED FEATURES 237

6935appA_final.qxd 8/2/06 9:18 PM Page 237

be checked for changes. If the fields being checked have changed prior to the commit, then
the commit will fail.

Versioning is generally a simpler and more reliable approach, so we suggest that you use
this whenever you need optimistic locking features.

XML Relational Persistence
Hibernate provides a feature that allows XML data to be mapped into the entity model for
access using the normal session methods. This functionality is provided primarily so that
data can be imported into and exported from the underlying relational data store—it is not
intended as a replacement for relational databases!

The feature can be used for various purposes—archiving data, implementing SOAP
interfaces, and so on—but the most common use is for the purposes of processing (and
providing) external data feeds such as product catalogs. We show here how the example
application in Chapter 3 (an advertisements database) can be configured to read and write
appropriate XML feeds for the mapped entities.

Hibernate requires the use of Dom4J as the API for XML access because Hibernate’s inter-
nals already rely upon Dom4J to read configuration and mapping files.

Adding Node Information to Mappings
Two attributes are used to add all the XML-specific information to your existing mapping files:
node and embed-xml.

The node attribute applies to most tags that correspond to tables or columns in the data-
base. The value can be a single string, in which case it represents an element name in the XML
markup; or it can be preceded by a commercial at symbol (@), in which case it represents the
attribute of an element. Paths can be indicated using forward slashes. This is the standard
XPath syntax for identifying elements in an XML document.

If set to true, the embed-xml attribute indicates that the property or entity referenced
should be included inline as XML. If set to false, it indicates that a reference to the primary
key should be substituted instead. This is necessary because the DOM generation does not
perform reference handling automatically—so loops in the entity model references would
result in infinite loops in XML generation if this option could not be set to true.

Note that if embed-xml is set to false for an association, generating XML output that refer-
ences another entity will not automatically include a representation of the entity elsewhere in
the generated document. This is your responsibility. Listing A-7 shows how our example Advert
class from Chapter 3 might be marked up with node and embed-xml attributes.

Listing A-7. The Advert Example Classes from Chapter 3 Marked Up for XML Persistence

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

APPENDIX A ■ MORE ADVANCED FEATURES238

6935appA_final.qxd 8/2/06 9:18 PM Page 238

<hibernate-mapping>
<class name="sample.entity.User" table="aduser"

node="user">

<id name="id" type="long" column="id"
node="@id">
<generator class="native"/>

</id>

<property name="name" column="name" type="string" unique="true"
node="@name"/>

<property name="password" column="password" type="string"
node="@password"/>

</class>

<class name="sample.entity.Category" table="category"
node="category">

<id name="id" type="long" column="id"
node="@id">
<generator class="native"/>

</id>

<property name="title" column="title" type="string" unique="true"
node="@name"/>

<set name="adverts" table="link_category_advert"
node="." embed-xml="true">

<key column="category" foreign-key="fk_advert_category"/>
<many-to-many class="sample.entity.Advert"

column="advert" foreign-key="fk_category_advert"
embed-xml="false" node="advert"/>

</set>
</class>

<class name="sample.entity.Advert" table="advert"
node="advert">

<id name="id" type="long" column="id"
node="@id">
<generator class="native"/>

</id>

APPENDIX A ■ MORE ADVANCED FEATURES 239

6935appA_final.qxd 8/2/06 9:18 PM Page 239

<property name="message" column="message" type="string"
node="content"/>

<property name="title" column="title" type="string"
node="title"/>

<many-to-one name="user" column="aduser"
class="sample.entity.User" not-null="true"
foreign-key="fk_advert_user"
node="@user" embed-xml="false"/>

</class>
</hibernate-mapping>

Exporting XML Entities
With the entity mappings marked up for XML relational persistence, the generation of output
from an existing set of persistent entities is fairly simple. By obtaining a session with the entity
mode configured for Dom4J, the entity proxies retrieved from that session will be org.dom4j.Node
instances that can be manipulated with the normal Dom4J API.

To access a Session object in this mode, you first open a conventional session, and then
invoke the getSession() method on it, passing EntityMode.DOM4J as the sole parameter thus:

Session = sessionFactory.openSession();
Session xmlSession = session.getSession(EntityMode.DOM4J);

Once an appropriate Dom4J document has been populated with the entities (extracted
from Hibernate in the normal way), the session can be closed, and the Dom4J document can
be treated as a self-contained entity, as shown in Listing A-8.

Listing A-8. Exporting the Advert Entities Using Dom4J

package sample.xml;

import java.io.*;
import java.util.*;
import org.dom4j.*;
import org.hibernate.*;
import org.hibernate.cfg.Configuration;

public class ExportXML {
private static final SessionFactory sessionFactory = new Configuration()

.configure().buildSessionFactory();

public static void main(String[] args)
throws Exception

{
System.out.println("Preparing the DOM Document");
Document document = DocumentHelper.createDocument();
Element root = document.addElement("catalog");

APPENDIX A ■ MORE ADVANCED FEATURES240

6935appA_final.qxd 8/2/06 9:18 PM Page 240

System.out.println("Preparing the Session objects");
Session session = sessionFactory.openSession();
Session xmlSession = session.getSession(EntityMode.DOM4J);

System.out.println("Reading the catalog from the database");
session.beginTransaction();

export(xmlSession,root,"from User");
export(xmlSession,root,"from Advert");
export(xmlSession,root,"from Category");

session.getTransaction().commit();
session.close();

System.out.println("Dumping the catalog to a file");
BufferedWriter writer = new BufferedWriter(new FileWriter("catalog.xml"));
document.write(writer);
writer.flush();
writer.close();

System.out.println("Done.");
}

public static void export(Session xmlSession,Element root,String hql) {
Query query = xmlSession.createQuery(hql);
List categories = query.list();
Iterator cit = categories.iterator();
while(cit.hasNext()) {

Element element = (Element)cit.next();
root.add(element);

}
}

}

The code in Listing A-8 generates the catalog.xml file shown in Listing A-9. Note how the
node attributes in the mapping file correspond to the positions of the elements and attributes
in the exported XML file. Note also how setting the embed-xml attribute to false substitutes the
id value for the generated XML in the elements at the catalog/category/advert path.

Listing A-9. The XML Exported by Hibernate

<?xml version="1.0" encoding="UTF-8"?>
<catalog>

<user id="1" name="dave" password="dodgy"/>
...
<advert id="1" user="1">

<content>48k original box and packaging</content>
<title>Sinclair Spectrum for sale</title>

</advert>
...

APPENDIX A ■ MORE ADVANCED FEATURES 241

6935appA_final.qxd 8/2/06 9:18 PM Page 241

<category id="1" name="retro">
<advert>1</advert>
<advert>3</advert>

</category>
...

</catalog>

Importing XML Entities
The session in Dom4J entity mode can be used to import data into Hibernate as well as export
it. The process is really just the export process in reverse—although there is one gotcha to be
aware of: by default, the entity names will be assumed to be the same as the element nodes
that you attempt to persist from the Dom4J document. Unless your node attributes in the
mapping files correspond exactly with the entity names used in the mapping files, calls to the
session will need to include the explicit entity name being saved.

Listing A-10 shows an example of a workaround for this issue, in which a hard-coded map
translates short element names into full entity names, and the version of the save() method
that takes an entity name string is invoked. When the class elements’ node attributes corre-
spond exactly with entity names, this sort of approach becomes unnecessary.

Listing A-10. Importing Entities from an XML Document

package sample.xml;

import java.util.*;
import org.dom4j.*;
import org.dom4j.io.SAXReader;
import org.hibernate.*;
import org.hibernate.cfg.Configuration;

public class ImportXML {
private static final SessionFactory sessionFactory = new Configuration()

.configure().buildSessionFactory();

public static void main(String[] args) throws Exception {

System.out.println("Preparing the DOM Document");
SAXReader reader = new SAXReader();
Document document = reader.read("catalog.xml");

System.out.println("Preparing the Session objects");
Session session = sessionFactory.openSession();
Session xmlSession = session.getSession(EntityMode.DOM4J);

System.out.println("Importing the catalog from the document");
session.beginTransaction();

APPENDIX A ■ MORE ADVANCED FEATURES242

6935appA_final.qxd 8/2/06 9:18 PM Page 242

Map names = new HashMap();
names.put("user","sample.entity.User");
names.put("advert","sample.entity.Advert");
names.put("category","sample.entity.Category");

List entities = document.getRootElement().content();
Iterator eit = entities.iterator();
while(eit.hasNext()) {

Node item = (Node)eit.next();
String entityName = (String)names.get(item.getName());
xmlSession.save(entityName,item);

}

session.getTransaction().commit();
session.close();

System.out.println("Done.");
}

}

Unfortunately, the default value for the node attribute, if it is not explicitly applied to the
class elements in the mapping files, is the short (unqualified) name of the class—not the entity
name, which defaults to the long (fully qualified) class name.

Other Considerations When Using XML Entities
The objects retrieved from Hibernate in the EntityMode.DOM4J session mode are Dom4J objects,
but they are still Hibernate persistence entities. You can therefore manipulate these entities
through the Dom4J API and persist these changes to the database without needing to access
the entity as a POJO.

Tools and APIs that process an XML document can therefore be applied to a Dom4J docu-
ment extracted from Hibernate, and as long as it is still associated with the originating session,
changes made to the document will be reflected in the database when the session is flushed or
the transaction is committed.

Hibernate and EJB 3 annotations do not provide support for the use of XML relational
persistence. If you want to use this feature to import or export data for an annotated applica-
tion, you will first need to generate appropriate XML-based mapping files from the annotated
classes.

Maps
In addition to the default mode (POJO) and the XML mode (Dom4J) described previously,
the Hibernate session can be accessed in one more way: as a map of name/value pairs. This
mode is accessed by calling the getSession() method with a parameter of EntityMode.MAP
(see Listing A-11).

APPENDIX A ■ MORE ADVANCED FEATURES 243

6935appA_final.qxd 8/2/06 9:18 PM Page 243

Listing A-11. Accessing a Hibernate Session in Map Mode

package sample.map;

import java.util.*;
import org.hibernate.EntityMode;
import org.hibernate.*;
import org.hibernate.cfg.Configuration;

public class AccessAsMap {
private static final SessionFactory sessionFactory = new Configuration()

.configure().buildSessionFactory();

public static void main(String[] args) throws Exception {

System.out.println("Preparing the Session objects");
Session session = sessionFactory.openSession();
Session mapSession = session.getSession(EntityMode.MAP);

System.out.println("Reading the map entries for XXX");
session.beginTransaction();

Map entity = (Map)mapSession.get("sample.entity.Category",new Long(2));
System.out.println("Category Title: " + entity.get("title"));

System.out.println("Contains Adverts:");
Set adverts = (Set)entity.get("adverts");
Iterator adIt = adverts.iterator();
while(adIt.hasNext()) {

Map advert = (Map)adIt.next();
System.out.println(advert.get("title"));

}

session.getTransaction().commit();
session.close();

System.out.println("Done.");
}

}

This mode works much the same as the Dom4J mode—changes written to the Map objects
will be persisted exactly as if a normal persistent POJO object had been updated. Note that
only the entities themselves will be represented as Maps—not any of their attributes having a
value type, or associations using Collection types. For example, in Listing A-11, the Category
entity is represented as a Map, but its title attribute is represented as a String and its adverts
attribute is represented as a Set—however, the Set itself contains Advert entities represented
as Maps.

APPENDIX A ■ MORE ADVANCED FEATURES244

6935appA_final.qxd 8/2/06 9:18 PM Page 244

Limitations of Hibernate
First and foremost, Hibernate wants every entity to be identifiable with a primary key. Ideally, it
would like this to be a surrogate key (a single column distinct from the fields of the table). Hiber-
nate will accept a primary key that is not a surrogate key. For example, the username column
might be used to uniquely identify an entry in the user table. Hibernate will also accept a com-
posite key as its primary key, so that the username and hostname might be used to form the
primary key if the username alone does not serve to identify the row.

In the real world, things do not really work like that. Any database that has been around
the block a few times is likely to have at least one table for which the primary key has been
omitted. For instance, the contents of the table may not have needed to be involved in any
relations with other tables. While this is still bad database design, the error is only exposed
when Hibernate tries to map objects to data. It may be that adding a suitable surrogate key
column is an option—when this is the case, we urge you to do so. In practice, however, the
fundamental schema may not be under the developer’s control, or other applications may
break if the schema is radically changed.

In most scenarios, a developer will be able to arrange the creation of views or stored pro-
cedures. It may be possible to create the appearance of a suitable primary key using these if no
other options present themselves, but you should consult with your database administrators,
since a table for which no true primary key can be obtained is likely to cause long-term cor-
ruption of your data.

Finally, if you can neither change a broken schema nor add views or stored procedures
to ameliorate its effects, you have the option of obtaining a pure JDBC connection (see
Listing A-12) from the session to the database, and carrying out traditional connected data-
base access. This is the option of last resort, and is only truly of value when you anticipate
being able to correct the faulty schema at some future time.

Listing A-12. Obtaining a JDBC Connection from Hibernate

SessionFactory factory =
new Configuration().configure().buildSessionFactory();

Session session = factory.openSession();
Connection connection = session.getConnection();

Hand-Rolled SQL
While Hibernate cannot operate upon entities that lack primary keys, it is also extremely awk-
ward to use Hibernate when there is a poor correspondence between the tables and the
classes of your object model.

Using a Direct Mapping
Figure A-1 presents a fairly typical example of a valid database model that may be painful to
represent in our mapping files.

APPENDIX A ■ MORE ADVANCED FEATURES 245

6935appA_final.qxd 8/2/06 9:18 PM Page 245

Here, the product table represents a product (for example, a flashlight). The color table
represents the colors in which it is sold. The link table named product_color then allows us to
identify a product by stock keeping unit (SKU), and identify the colors in which it is available.

If we do not mind the Product object retaining a set of colors (representing the colors in
which it can be sold), then we have no problem; but if we want to distinguish between a red
flashlight and a green one, things become more difficult (see Listing A-13).

Listing A-13. A Fairly Direct Representation of the Product

<class name="com.hibernatebook.legacy.Product" table="product_color">

<composite-id
class="com.hibernatebook.legacy.ProductKey"
name="key">

<key-property type="int" name="id" column="product_id"/>
<key-property type="int" name="colorId" column="color_id"/>

</composite-id>

<many-to-one
name="color"
class="com.hibernatebook.legacy.Color"
column="color_id"
insert="false"
update="false"/>

<many-to-one
name="data"
class="com.hibernatebook.legacy.ProductData"
column="product_id"
insert="false"
update="false"/>

</class>

APPENDIX A ■ MORE ADVANCED FEATURES246

Figure A-1. A problematic but legal schema

6935appA_final.qxd 8/2/06 9:18 PM Page 246

There are several dissatisfying aspects to the mapping in Listing A-13. First, rather than
mapping our product table, we have mapped the link table. This makes sense when you con-
sider that the primary key formed from the two columns of this table uniquely identifies a
“colored product,” which the product table alone cannot do.

Second, we are obliged to create a number of distinct objects to represent the class: the
Product class itself, a class to represent the primary key (inevitable where a composite id
occurs), a class to represent the other attributes of the product, and the Color class.

Last, the use of the columns more than once within the mapping requires us to flag
them so that they cannot be written—this is a read-only mapping.

Using a View
Fortunately, most databases provide a simple mechanism for manipulating a schema so
that it better matches the business requirements. A database view will allow you to put
together a join that appears to be a table. By a suitable choice of columns from the existing
tables, you can construct a view that is much easier to map (see Listing A-14).

Listing A-14. A View on the Product Tables

create view vwProduct (ProductKey,ColorKey,Id,SKU,ColorId)
AS

select
p.id as ProductKey,
c.id as ColorKey,
p.id as Id,
p.sku as SKU,
c.id as ColorId

from
product p,
product_color pc,
color c

where
p.id = pc.product_id

and
pc.color_id = c.id;

This view effectively reformats our table so that it has a correct (composite) primary key
formed from the link table’s two columns. It makes the SKU data available directly, and it
retains the foreign key into the color table.

Listing A-15 is a much more natural mapping.

APPENDIX A ■ MORE ADVANCED FEATURES 247

6935appA_final.qxd 8/2/06 9:18 PM Page 247

Listing A-15. The Revised Mapping

<class name="com.hibernatebook.legacy.Product" table="vwProduct">
<composite-id

class="com.hibernatebook.legacy.ProductKey"
name="key">
<key-property

type="int"
name="id"
column="ProductKey"/>

<key-property
type="int"
name="colorId"
column="ColorKey" />

</composite-id>

<property
name="id"
type="int"
column="id"
insert="false"
update="false"
unique="true"/>

<property
name="SKU"
type="int"
column="sku"
insert="false"/>

<many-to-one
name="color"
class="com.hibernatebook.legacy.Color"
column="ColorId"/>

</class>

The behavior of the composite primary key is unchanged, but the SKU now becomes
a simple property. The color entity is mapped as before.

The caveat for this approach is the problem of writing data to the mapping. Some
databases (for example, versions 4 and lower of MySQL) do not support writable views, and
others may have only limited support for them. To avoid views in these circumstances, we
must abandon complete portability in favor of database-specific SQL inserted directly into
the mapping file.

Putting SQL into a Mapping
Hibernate provides three tags that can be used to override the default behavior when writing
to the database. Instead of accepting the SQL generated by Hibernate from the information in

APPENDIX A ■ MORE ADVANCED FEATURES248

6935appA_final.qxd 8/2/06 9:18 PM Page 248

the mapping file, you can dictate exactly how changes to an entity should be enforced. The
disadvantage is that you will lose Hibernate’s guarantee of cross-database platform portability.
The advantage is that you can carry out operations that are not explicitly described in the
mapping, such as calculating and inserting values in the process of carrying out an insert.

The tags are <sql-insert>, <sql-update>, and <sql-delete>. All three work in the same way.
If you take a look at the DDL script for this appendix, you will see that our client table

includes seven fields, the last of which is the country field, as shown in Listing A-16.

Listing A-16. The DDL Script to Create the Client Table

create table client (
id int not null primary key,
name varchar(32) not null,
number varchar(10),
streetname varchar(128),
town varchar(32),
city varchar(32),
country varchar(32)

);

We will, however, ignore the country field in our mapping file. We would like this to be
automatically set to UK whenever a client entity is persisted.

Depending on the database, this could be implemented as part of the view’s support for
writing operations, or as a trigger invoked when the other fields are written—but we use the
<sql-insert> tag to specify the operation to perform.

The necessary ordering of the parameters can be determined by running Hibernate with
logging enabled for the org.hibernate.persister.entity level. You must do this before you
add the mapping. Listing A-17 shows a suitably formatted <sql-insert> element with the
parameters suitably ordered. Note that the identifier field id is in the last position—not the
first, as you might have expected.

Listing A-17. The Mapping File Using Explicit SQL to Update the Tables

<class name="com.hibernatebook.legacy.Client" table="Client">
<id type="int" name="id" column="id">

<generator class="native"/>
</id>
<property type="text" name="name" column="name"/>
<property type="text" name="number" column="number"/>
<property type="text" name="streetname" column="streetname"/>
<property type="text" name="town" column="town"/>
<property type="text" name="city" column="city"/>

<sql-insert>
insert into client(name,number,streetname,town,city,id,country)
values (?,?,?,?,?,?,'UK');
</sql-insert>

</class>

APPENDIX A ■ MORE ADVANCED FEATURES 249

6935appA_final.qxd 8/2/06 9:18 PM Page 249

In addition to the three SQL terms for writing to the database, you can specify hand-rolled
SQL for reading. This is appended as <sql-query> tags outside the class tag (see Listing A-18).
They are not intrinsically a part of the mapping. However, you can specify that one of them
should be used as the default loader for your class.

Listing A-18. An Alternative Mapping File Defining a Default Loader

...
<hibernate-mapping>

<class name="com.hibernatebook.legacy.Client"
table="Client">

<id type="int" name="id" column="id">
<generator class="native"/>

</id>
<property name="name"/>
<property name="number"/>
<property name="streetname"/>
<property name="town"/>
<property name="city"/>

<loader query-ref="DefaultQuery"/>
</class>

<sql-query name="DefaultQuery">
<return alias="c"

class="com.hibernatebook.legacy.Client"/>
SELECT

id as {c.id},
'NOT SPECIFIED' as {c.name},
number as {c.number},
streetname as {c.streetname},
town as {c.town},
city as {c.city}

FROM
Client

WHERE
id = ?

</sql-query>

</hibernate-mapping>

■Tip Unfortunately, this technique is not quite as sophisticated as you might hope—the custom SQL will
not be invoked in general terms. Only if the id is explicitly supplied, as is the case when calling the Session
class’s get() method, will the default handling be overridden in favor of the loader query.

APPENDIX A ■ MORE ADVANCED FEATURES250

6935appA_final.qxd 8/2/06 9:18 PM Page 250

Invoking Stored Procedures
Data outlives application logic. This is a general rule of thumb, and as we can attest, it holds
true in practice. The natural lifespan of a database will tend to see multiple applications. The
lifespan of some of these applications will, in turn, tend to overlap, so that at any one time we
expect substantially different code bases to be accessing the same data.

To resolve such issues, databases usually provide their own programming language to
allow complex business rules to be expressed and enforced within the boundary of the data-
base itself. These languages are expressed in stored procedures—essentially an API to the
database. Often, free-form SQL access to such a database is denied, and only access through
stored procedures is permitted. Barring errors in the code of the stored procedures them-
selves, this removes any risk of corruption.

One final advantage of using stored procedures is that when a substantial calculation is
required, the use of a stored procedure can reduce the network traffic involved. For example,
if you invoke a stored procedure to calculate the grand total of a table of accounts, only the
request and the result figure would need to traverse the network. The equivalent client-side
implementation would need to acquire the value to be totaled from every row!

Taking the client example from the “Putting SQL into a Mapping” section, we could
replace the SQL logic in the <sql-insert> tag with a call to a suitable stored procedure. The
callable attribute is set to true to indicate that Hibernate needs to issue a call to a stored pro-
cedure instead of a standard query (see Listing A-19).

Listing A-19. Mapping a Call to the Stored Procedure

<sql-insert callable="true">
{call insertClient(?,?,?,?,?,?)}

</sql-insert>

In the stored procedure definition (see Listing A-20), you will note that the order of the
parameters to be passed in has been tailored to match the order in which they will be pro-
vided by Hibernate.

Listing A-20. The Logic of the Stored Procedure

CREATE PROCEDURE
insertClient(p_name varchar(32),

p_number varchar(10),
p_streetname varchar(128),
p_town varchar(32),
p_city varchar(32),
p_id int)

AS
BEGIN

INSERT INTO client
(id,name,number,streetname,town,city,country)

VALUES
(:p_id,:p_name,:p_number,:p_streetname,:p_town,:p_city,'UK');

END

APPENDIX A ■ MORE ADVANCED FEATURES 251

6935appA_final.qxd 8/2/06 9:18 PM Page 251

By obtaining a JDBC connection from the session, it is of course possible to invoke stored
procedures directly; however, you must be aware that the Hibernate session cache cannot
track these updates.

Events
Hibernate 3 actually implements most of its functionality as event listeners. When you regis-
ter a listener with Hibernate, the listener entirely supplants the default functionality. For
example, the EJB 3–specific behavior required when using an EntityManager is achieved by
plugging in a set of EJB 3–specific event listeners!

If you look at the methods of the SessionImpl class, which is the internal Hibernate
implementation of the Session interface, you’ll see why this is the case. Most of the meth-
ods have a form very similar to that shown in Listing A-21.

Listing A-21. The Implementation of a Typical Method in SessionImpl

SaveOrUpdateEvent event = new SaveOrUpdateEvent(entityName, obj, this);
listeners.getSaveOrUpdateEventListener().onSaveOrUpdate(event);

The listeners field is an instance of SessionEventListenerConfig, which provides the
requested event listener, or the default if none is specified. So, if your event listener is provided
and doesn’t call the default one, nothing else can.

Event listeners are always registered globally for the event that they handle. You can regis-
ter them in the configuration file or programmatically. Either way, you will need to map your
implementation of one of the interfaces to the associated types, which you can look up in
Table A-1. (The names are almost—but not quite—standardized.)

Table A-1. The Listener Names and Their Corresponding Interfaces

Type Name Listener

auto-flush AutoFlushEventListener

delete DeleteEventListener

dirty-check DirtyCheckEventListener

evict EvictEventListener

flush FlushEventListener

flush-entity FlushEntityEventListener

load LoadEventListener

load-collection InitializeCollectionEventListener

lock LockEventListener

merge MergeEventListener

persist PersistEventListener

post-delete PostDeleteEventListener

post-insert PostInsertEventListener

post-load PostLoadEventListener

post-update PostUpdateEventListener

APPENDIX A ■ MORE ADVANCED FEATURES252

6935appA_final.qxd 8/2/06 9:18 PM Page 252

Type Name Listener

pre-delete PreDeleteEventListener

pre-insert PreInsertEventListener

pre-load PreLoadEventListener

pre-update PreUpdateEventListener

refresh RefreshEventListener

replicate ReplicateEventListener

save-update SaveOrUpdateEventListener

So, for example, your listener for the SaveOrUpdateEvent is mapped to the type name
save-update, must implement the SaveOrUpdateEventListener interface, and would nor-
mally have been implemented by the DefaultSaveOrUpdateEventListener class. It is wise to
follow a similar convention with your own naming, so your mapping file listener entry
might read like this:

<listener type="save-or-update"
class="com.hibernatebook.advanced.BookingSaveOrUpdateEventListener"/>

Alternatively, a programmatic registration of the same event would be given thus:

Configuration config = new Configuration();
config.setListener("save-update", new BookingSaveOrUpdateEventListener());

Because they override the default behavior, events are suitable for situations in which
you want to fundamentally change the Session’s behavior—particularly if you want to pre-
vent a certain event from being processed. Probably the best example of this requirement
is in authorizing access to the database, and, in fact, Hibernate provides a set of event lis-
teners for just this purpose. The four events listeners in question override the PreDelete,
PreUpdate, PreInsert, and PreLoad listeners. The logic in each case (in pseudocode) runs
something like this:

if(user does not have permission) throw RuntimeException
Invoke default listener…

Because events are invoked in the same thread as the user’s call to the session, the result
of an exception in the first step will be an exception (actually a security exception) as the
unprivileged user carries out the relevant operation.

To enable policy configuration of security, you would add the following:

<listener type="pre-delete"
class="org.hibernate.secure.JACCPreDeleteEventListener"/>

<listener type="pre-update"
class="org.hibernate.secure.JACCPreUpdateEventListener"/>

<listener type="pre-insert"
class="org.hibernate.secure.JACCPreInsertEventListener"/>

<listener type="pre-load"
class="org.hibernate.secure.JACCPreLoadEventListener"/>

APPENDIX A ■ MORE ADVANCED FEATURES 253

6935appA_final.qxd 8/2/06 9:18 PM Page 253

An Example Event Listener
Before we get stuck in a simple example, a word of caution: events are very much an exposed
part of the inner workings of the Session. While this is ideal for something requiring the level
of interference of a security tool, you will not need this for most purposes. Listing A-22 is more
in the nature of an illustrative “hack” than a real solution. In a real application, you would
probably solve this particular problem either within the body of the application, by using
interceptors, or by using triggers.

Listing A-22 shows how an event listener could be used to prevent the booking of cer-
tain seats from being persisted to the database in a concert hall ticket booking application
(we revisit this example application in a little more detail with a slightly more realistic sce-
nario in the later section, “Interceptors”).

Listing A-22. Programmatically Installing an Event Listener

public class EventExample {
public static void main(String[] args) {

Configuration config = new Configuration();

// Apply this event listener (programmatically)
config.setListener("save-update", new BookingSaveOrUpdateEventListener());

SessionFactory factory = config.configure().buildSessionFactory();
Session session = factory.openSession();

Transaction tx = session.beginTransaction();

// Make our bookings... seat R1 is NOT to be saved.
session.saveOrUpdate(new Booking("charles","R1"));
session.saveOrUpdate(new Booking("camilla","R2"));

// The confirmation letters should not be sent
// out until AFTER the commit completes.
tx.commit();

}
}

Our example is only going to implement the SaveOrUpdateEventListener interface. You
will notice that in Listing A-22, the original calls to save() have been replaced with calls to
saveOrUpdate(). There is a close correspondence between the methods on the Session
interface and the event listeners with similar names. A call to save() will not invoke
saveOrUpdate(), and vice versa. Try using the save() method in the EventExample, and you
will see that the BookingSaveOrUpdateListener is not invoked. In Listing A-23, we present
the logic of the listener registered in Listing A-22.

APPENDIX A ■ MORE ADVANCED FEATURES254

6935appA_final.qxd 8/2/06 9:18 PM Page 254

Listing A-23. The Implementation of an Event Listener

package com.hibernatebook.advanced.events;

import java.io.Serializable;

import org.hibernate.HibernateException;
import org.hibernate.event.SaveOrUpdateEvent;
import org.hibernate.event.def.DefaultSaveOrUpdateEventListener;

public class BookingSaveOrUpdateEventListener
extends DefaultSaveOrUpdateEventListener

{
public Serializable onSaveOrUpdate(SaveOrUpdateEvent event)

throws HibernateException {
if(event.getObject() instanceof Booking) {

Booking booking = (Booking)event.getObject();
System.out.println("Preparing to book seat " + booking.getSeat());

if(booking.getSeat().equalsIgnoreCase("R1")) {
System.out.println("Royal box booked");
System.out.println("Conventional booking not recorded.");

// By returning null instead of invoking the
// default behavior‚ we prevent the invocation
// of saveOrUpdate on the Session from having
// any effect on the database!
return null;

}
}

// The default behavior:
return super.onSaveOrUpdate(event);

}
}

Interceptors
Interceptors are privy to a blow-by-blow account of what is going on as Hibernate carries out
its duties. While you can listen in, you can only make limited changes to the way in which
Hibernate actually behaves. This is the common requirement; unless you are making substan-
tial changes to the persistence behavior, you will usually want only to track what is going on.

APPENDIX A ■ MORE ADVANCED FEATURES 255

6935appA_final.qxd 8/2/06 9:18 PM Page 255

Financial packages often require considerable auditing information to be maintained to
prevent fraud and aid accountability. Auditing is a natural candidate for implementation as an
interceptor, as it would normally require that no changes be made to the persistence process
at all.

The question that usually arises when discussing interceptors is “why not use triggers?”
Triggers should never embody application logic, only business logic. If any application is
going to have audit-free access to the database, you cannot implement the auditing in trig-
gers. Worse, the triggers may not have access to the user information that’s needed. In most
multi-tier situations, the need to pool the database connections precludes establishing indi-
vidual user logins to the database. So, for example, the trigger would only know that a user
with the login “MonolithicApplication” carried out an update of last year’s sales figures—not
that it was carried out by, say, Jim from accounts, which is who the auditors are likely to be
interested in! Table A-2 summarizes the points in the application life cycle at which the vari-
ous methods will be invoked.

APPENDIX A ■ MORE ADVANCED FEATURES256

Table A-2. The Interceptor Methods

Name When Invoked Comments

afterTransactionBegin() Invoked immediately after a call to This method can change the state
begin() on a Transaction object of the transaction—for example, it
retrieved from the Session object. can call rollback().

afterTransactionCompletion() Invoked immediately after the
completion of a transaction.

beforeTransactionCompletion() Invoked immediately prior to the
completion of a transaction. This
method can change the state of the
transaction—for example, it can
call rollback().

findDirty() Invoked during calls to flush(). This allows the saving of changes
to attributes to be prevented or
forced.

getEntity() Invoked when an entity not in the
Session object’s own cache is
requested by its identifier.

getEntityName() Invoked when the Session object
needs to determine the name of a
given entity.

instantiate() Invoked when the Session object Because the “empty” object can be
needs to create an entity instance. created here, this allows Hibernate

(in legacy applications, for exam-
ple) to use entities that do not
have a default constructor.

isTransient() Invoked when the Session object
needs to determine whether an
entity it has been asked to persist
is transient—for example, during
calls to saveOrUpdate().

onDelete() Invoked before an object is deleted. The object’s state should not be
tampered with at this point.

6935appA_final.qxd 8/2/06 9:18 PM Page 256

Name When Invoked Comments

onFlushDirty() Invoked during a call to flush()
after entities have been determined
to be dirty. (If the entities are not
dirty, then there are no changes to
be persisted and Hibernate has no
actions to perform—therefore, there
is no general case interceptor, and
this interceptor will not be invoked
if the entities are clean.)

onLoad() Invoked immediately before an The loading can be overridden
entity object is populated from the (by returning false), and the
database. instantiated but uninitialized

object is available if supplemen-
tary initialization from the listener
is needed.

onSave() Invoked before an object is saved. This permits the state of the object
to be changed immediately before
it is saved.

postFlush() Invoked after the Session object is
flushed, if and only if the Session
object had to carry out SQL opera-
tions to synchronize state with the
database.

preFlush() Invoked immediately before the
Session object is flushed.

APPENDIX A ■ MORE ADVANCED FEATURES 257

An Example Interceptor
To illustrate how all this works in practice, we will create a simple interceptor from scratch. While
the auditing example is a good one, it is rather too involved for our demonstration. Instead, we
will consider a concert hall seat-booking system (the entity to represent an entity is shown in
Listing A-24) for which the details of bookings will be sent out to customers as they are pushed
into the database.

Listing A-24. The Booking POJO

package com.hibernatebook.advanced.events;

public class Booking {
public Booking(String name, String seat) {

this.name = name;
this.seat = seat;

}

Booking() {
}

6935appA_final.qxd 8/2/06 9:18 PM Page 257

protected String getName() {
return name;

}

protected void setName(String name) {
this.name = name;

}

protected String getSeat() {
return seat;

}

protected void setSeat(String seat) {
this.seat = seat;

}

private String seat;
private String name;

}

Interceptors have to override the org.hibernate.Interceptor interface. You can set a
global interceptor for the configuration (see Listing A-25), or you can apply interceptors on a
per-session basis. You have to install the interceptor programmatically—there is no syntax for
specifying this in the Hibernate configuration file.

Listing A-25. Installing a Global Interceptor

package com.hibernatebook.advanced.events;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;

public class MailingExample {
public static void main(String[] argv) {

Configuration config = new Configuration();

// Apply this interceptor at a global level...
config.setInterceptor(new BookingInterceptor());

SessionFactory factory = config.configure().buildSessionFactory();
Session session = factory.openSession();

// A local interceptor could alternatively
// be applied here:
// session.setInterceptor(new BookingInterceptor());

APPENDIX A ■ MORE ADVANCED FEATURES258

6935appA_final.qxd 8/2/06 9:18 PM Page 258

Transaction tx = session.beginTransaction();

// Make our bookings...
session.save(new Booking("dave","F1"));
session.save(new Booking("jeff","C3"));

// The confirmation letters should not be sent
// out until AFTER the commit completes.
tx.commit();

}
}

The interceptor that we are applying is going to capture the information from the Booking
objects that we are storing in the database. Listing A-26 demonstrates the basic mechanism,
but it is only a toy example. We will discuss some of its deficiencies in a moment.

Listing A-26. An Interceptor Implementation

package com.hibernatebook.advanced.events;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;

import org.hibernate.CallbackException;
import org.hibernate.EntityMode;
import org.hibernate.Interceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;

public class BookingInterceptor implements Interceptor {

public BookingInterceptor() {
}

private ThreadLocal stored = new ThreadLocal();

public void afterTransactionBegin(Transaction tx) {
stored.set(new HashSet());

}

public void afterTransactionCompletion(Transaction tx) {
if (tx.wasCommitted()) {

Iterator i = ((Collection) stored.get()).iterator();

APPENDIX A ■ MORE ADVANCED FEATURES 259

6935appA_final.qxd 8/2/06 9:18 PM Page 259

while (i.hasNext()) {
Booking b = (Booking) i.next();
sendMail(b);

}
}
stored.set(null);

}

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException {

((Collection) stored.get()).add(entity);
return false;

}

private void sendMail(Booking b) {
// Here we would actually send out the e-mail
System.out.print("Name: " + b.getName());
System.out.println(", Seat: " + b.getSeat());

}

public void beforeTransactionCompletion(Transaction tx) {
}

public int[] findDirty(Object entity, Serializable id,
Object[] currentState, Object[] previousState,
String[] propertyNames, Type[] types) {

return null;
}

public Object getEntity(String entityName, Serializable id)
throws CallbackException {

return null;
}

public String getEntityName(Object object) throws CallbackException {
return null;

}

public Object instantiate(String entityName, EntityMode entityMode,
Serializable id) throws CallbackException {

return null;
}

public Boolean isTransient(Object object) {
return null;

}

APPENDIX A ■ MORE ADVANCED FEATURES260

6935appA_final.qxd 8/2/06 9:18 PM Page 260

public void onDelete(Object entity, Serializable id, Object[] state,
String[] propertyNames, Type[] types) throws CallbackException {

}

public boolean onFlushDirty(Object entity, Serializable id,
Object[] currentState, Object[] previousState,
String[] propertyNames, Type[] types) throws CallbackException {

return false;
}

public boolean onLoad(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException {

return false;
}

public void postFlush(Iterator entities) throws CallbackException {
}

public void preFlush(Iterator entities) throws CallbackException {
}

}

Our interceptor makes use of the afterTransactionBegin() method to prepare to collect
booking details, the onSave() method to collect them, and the afterTransactionCompletion()
method to report the successful bookings. This sequence guarantees that bookings will not be
reported to the users until after we are confident that they have been retained in the database.

A minor deficiency of this implementation is that the e-mail is sent outside the transac-
tion—a system failure immediately after the commit completes could cause the e-mail not to
be sent. In our scenario, this is unimportant, because e-mail is already an unreliable transport
mechanism; but there are other situations, such as the auditing example discussed earlier, in
which this may be unacceptable. In these cases, interception may not be appropriate, and an
integrated solution tied into a two-phase commit transaction may be required.

More importantly, our example assumes that the Booking object will not be altered between
its addition to the set of e-mails to be sent and their transmission. This is an extremely danger-
ous assumption! A safer approach would be to create copies of the Booking objects or, better yet,
to copy their data into a more appropriate object, as shown in Listing A-27.

Listing A-27. A Better Approach to Preparing the Mailshot

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

{
if(entity instanceof Booking) {

Booking booking = (Booking)entity.
Mailshot mailshot = new Mailshot(booking.getName(), booking.getSeat());

APPENDIX A ■ MORE ADVANCED FEATURES 261

6935appA_final.qxd 8/2/06 9:18 PM Page 261

((Collection) stored.get()).add(mailshot);
}
return false;

}

Finally, we don’t necessarily have enough information to prepare our mailshot—the
e-mail address may be missing. If the name field actually represents the e-mail address, then
we are fine; but if it represents a key into other objects, and hence tables in the database, then
we have to be careful. It is possible to write database logic from within an interceptor, but the
risk of accidentally recursing back into your interceptor logic is high, so we don’t recommend
it. It’s slightly less tricky if you are only using a session-scoped interceptor, but there are prob-
ably safer ways to achieve the same end result.

In this example, the methods that we are not using have been given a default implemen-
tation. You will note that some of these methods return null or false. These methods are
permitted to change the data that is preserved or returned by the session. Returning to the
onSave() method, we will consider another possible implementation, shown in Listing A-28.

Listing A-28. Changing the Data from Within an Interceptor

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

{
if(entity instanceof Booking) {

state[1] = "unknown";
}
return true;

}

Here we are altering the state array. This contains the values of each of the objects’ fields
that are to be stored (in the order defined in the mapping file). In our Booking class, field 0 is the
id, field 1 is the name, and field 2 is the seat—so here we have changed the name value to be pre-
served in the database. Returning true causes Hibernate to reflect this change when it saves the
data. If we left the return flag as false, nothing would happen when the method was called.

The temptation is to assume that returning false guarantees the safety of the data to be
preserved, but, in fact, this is not the case. The state array represents copies of the data to
be preserved—but we have also been given access to the actual object (entity) that contains
the original values. If you amend the fields of the entity before returning, the flag will not pre-
vent your changes from being made. Listing A-29 illustrates how this might occur.

Listing A-29. Changing the Data in an Unorthodox Way

public boolean onSave(Object entity, Serializable id,
Object[] state, String[] propertyNames, Type[] types)
throws CallbackException

APPENDIX A ■ MORE ADVANCED FEATURES262

6935appA_final.qxd 8/2/06 9:18 PM Page 262

{
if(entity instanceof Booking) {

Booking booking = (Booking)entity;
booking.setName("unknown");

}
// The flag can't save us from ourselves here!
return false;

}

Again, this is probably not the best way to make the changes, but it can be useful when
you already have a considerable body of logic prepared to process the entity type.

Overriding the Default Constructor
Occasionally, you will find that it is necessary to persist a POJO that has no default constructor.
Usually you will have access to the source code, and should just make the change directly. Occa-
sionally, however, you may find that you are working with classes for which the source code is
not available—or that you are working with large bodies of generated objects for which it is
extremely inconvenient to manage changes made to the source code. In these circumstances,
it is possible to use an interceptor to replace the default object-creation logic.

This technique can be used as long as you have some way of obtaining or applying default
values for the parameters of the POJO’s non-default constructor. Listing A-30 shows an exam-
ple of the use of this technique to instantiate a POJO whose only constructor demands a
String parameter.

Listing A-30. Invoking a Non-Default Constructor

private static class OverrideCtor implements Interceptor {

public Object instantiate(
String entityName,
EntityMode entityMode,
Serializable id)

throws CallbackException
{

if(entityName.equals(MissingDefaultCtorClass.class.getName())) {
// My call to CTor
return new MissingDefaultCtorClass("NOT SET");

} else {
// Some other class - continue to default handling
return null;

}
}

// ... the remaining default method declarations...
}

APPENDIX A ■ MORE ADVANCED FEATURES 263

6935appA_final.qxd 8/2/06 9:18 PM Page 263

Summary
In this appendix, we have examined Hibernate’s place in the new Enterprise Java Beans stan-
dard (EJB 3), and looked at alternative mechanisms for accessing Hibernate entities. We have
shown how SQL and stored procedures can be integrated into the Hibernate environment,
and we have discussed how events and listeners provide internal access to Hibernate’s per-
sistence mechanism.

APPENDIX A ■ MORE ADVANCED FEATURES264

6935appA_final.qxd 8/2/06 9:18 PM Page 264

Hibernate Tools

The Hibernate Tools toolset really consists of two quite distinct tools: a set of plug-ins to
enhance the Eclipse integrated development environment (IDE), and a set of tasks for the
Ant build tool. They are packaged together because they share significant chunks of imple-
mentation despite their very different façades. We have already used one of the Ant tasks
from Hibernate Tools in earlier chapters to generate our database schemas. In this appendix,
we will discuss the other available tasks. First, however, we will discuss the use of the toolset
as a plug-in for Eclipse.

■Caution At the time of writing, Hibernate Tools is at an advanced beta stage of development. You should
be aware that you may encounter rough edges and bugs when using these tools. Currently, the Ant tasks are
more polished than the Eclipse plug-ins. Even so, we think that it is well worth familiarizing yourself with all
these tools and even using them in production, as most of the problems can be worked around.

It is beyond the scope of this book to attempt to teach you how to use Ant or Eclipse
(although we do walk you through some of the less common configuration details). To get the
most from this appendix, you should be familiar with both Ant and Eclipse—although it is
possible to use both parts of the plug-in independently.

General information on the latest versions of Hibernate Tools, any changes or new fea-
tures, the online documentation, and the locations of the various downloads are available
from the Hibernate web site (http://tools.hibernate.org).

The Eclipse Plug-In
Eclipse is one of the best-known and liked Java development environments to emerge in
recent years. Eclipse evolved originally as a proprietary component of IBM’s WebSphere
Application Developer (WSAD) environment. IBM chose to release Eclipse, the IDE, as an
open source application. Thus, the open source Eclipse IDE emerged as a mature product
virtually overnight.

Eclipse is designed as a core application, the Eclipse platform, extended by various plug-
ins, typically including Java Development Tools (JDT). For our purposes, we assume that you
will start out with this combination (known rather confusingly as the Software Development

265

A P P E N D I X B

■ ■ ■

6935appB_final.qxd 8/2/06 9:15 PM Page 265

Kit, or SDK) as the basis for installing Hibernate Tools. At the time of writing, the latest version
of the SDK is 3.1.2.

Eclipse can be downloaded from the Eclipse Foundation web site (www.eclipse.org). You
will find a file named eclipse-SDK-3.1.2-win32.zip in the Downloads section.

The Hibernate team is now employed by JBoss, who provides a branded version of Eclipse
that includes the Hibernate plug-ins, including several JBoss-specific ones. This can be down-
loaded from the JBoss web site (http://download.jboss.com/jbosside/builds). If you choose
to use this version of Eclipse, then you can omit the installation steps described in the next
section.

Installing the Plug-In
We will now walk you through the process of installing the plug-in using Eclipse’s standard
updates feature.

Select the Find and Install menu option from the Help ➤ Software Updates menu.
You should then select the option to search for new features, as Hibernate is not a stan-

dard Eclipse SDK component.
By default, Eclipse will only be aware of the Eclipse Foundation web site as a source of

new Eclipse features. Click the New Remote Site button shown in the upper right of Figure B-1
to add the site from which you will obtain the Hibernate Tools plug-in.

You will now need to enter the URL for the site from which Eclipse will obtain the plug-in,
and an informal name for the site, into the dialog shown in Figure B-2. Presently, the down-
load site is at http://download.jboss.org/jbosside/updates/development—this is unlikely to
change, but if you encounter problems, you should check the http://tools.hibernate.org
web site to make sure that this is still listed as the update site.

APPENDIX B ■ HIBERNATE TOOLS266

Figure B-1. By default, only www.eclipse.org is available as a download site.

6935appB_final.qxd 8/2/06 9:15 PM Page 266

You will then be returned to the list of sites shown in Figure B-3, where you should
uncheck the Eclipse download site, as you will only be installing the Hibernate Tools plug-in.

Click the Next button, and Eclipse will download the list of available updates from the
updates site that you have provided.

If you have not provided the correct site name, or you have other connectivity issues, you
will not be able to reach this step. If you are experiencing problems, go back and check that
you have configured any necessary proxy settings, and that all the appropriate URLs have
been entered correctly.

Once you successfully reach this step, you should select the Hibernate Tools check box
and click Next.

Eclipse now lists the features that will be installed and prompts you to accept the
license that applies to the plug-in features. You must accept the terms and conditions of
the license to proceed beyond this step. Once you have checked the Accept radio button,
click the Next button.

You will now be presented confirmation of the features to be installed, and given the
option of installing the features to a nonstandard location. (We always accept the default
installation into the Eclipse plug-ins directory.) Click Finish to proceed.

Currently, the Hibernate Tools plug-in is not digitally signed. Eclipse warns you of this.
In principle, it is possible that a malicious third party with access to servers between you
and the Eclipse download site could substitute their own code for the Eclipse tools. In prac-
tice this is unlikely, but it is to be hoped that the Hibernate or JBoss teams will start code
signing their final releases. To proceed with the plug-in installation, you must accept the
verification prompt.

Finally, Eclipse prompts you to restart or apply the changes directly. Generally when
installing Eclipse plug-ins, it is safest to select the restart option. Though we know of no spe-
cific problems with the Hibernate Tools, we recommend choosing restart here anyway—it
won’t be necessary to reboot the PC, though!

APPENDIX B ■ HIBERNATE TOOLS 267

Figure B-2. Specifying the new download site

Figure B-3. Deselect the Eclipse update site.

6935appB_final.qxd 8/2/06 9:15 PM Page 267

At this point, you will have successfully completed the installation of the Hibernate Tools
plug-in. There will be no immediate visible change to the layout of the workbench—however,
as you will see in the next step, there should be some new options for you, accessible via the
various menus—including a new Eclipse perspective onto some of the Hibernate workbench
views.

■Note If you are unable or unwilling to install the software directly from Eclipse, it is also possible to
download the tools as a ZIP file from the Hibernate site and copy the plug-ins directory from the archive
directly over the top of Eclipse’s own plug-ins directory. You should then restart Eclipse for the changes to
take effect. We do not recommend that you try this approach unless you are already comfortable with the
process of installing Eclipse plug-ins in this manner.

The Eclipse plug-in installation process is now quite streamlined, so it is unlikely that you
will encounter any serious problems. However, if you do have problems, first check that you
have the correct versions of the downloads described here, and check that you have followed
the installation steps as given previously. If you are still encountering problems, you should
search the Tools forum on the Hibernate Forums page (http://forum.hibernate.org) to see if
other users have encountered the same problems. You should also check the Hibernate bug
database (www.hibernate.org/217.html) to see if there are known problems that match yours.

The Boilerplate Project Configuration
Now that the tools plug-in has been installed, you are ready to set up a project that will take
advantage of it. As a first step, we recommend configuring a user library to make adding the
appropriate JAR files to new projects more straightforward, and to make the resulting project
view less cluttered. Figure B-4 compares the view of the project’s contents with and without
the use of user libraries.

APPENDIX B ■ HIBERNATE TOOLS268

Figure B-4. An Eclipse project using user libraries (left) compared with one using JAR files directly
(right)

6935appB_final.qxd 8/2/06 9:15 PM Page 268

You should be aware that Eclipse user libraries are not a Java standard, and do not exist as
independent entities. They are merely a grouping of paths to JAR files to make configuring
Eclipse projects more convenient. The user library will not reflect changes made to the under-
lying JAR files themselves (moving or deleting them, for instance).

Because user libraries belong to the Eclipse workspace, rather than to the individual proj-
ects, you can create a library from the Window ➤ Preferences menu before you have created
any projects.

You should then drill down through the tree view to select the Java ➤ Build Path ➤ User
Libraries node.

Initially there are no user libraries configured. You will need to click the add button to cre-
ate your own.

You will be prompted for a name for the library. The first library will contain the JAR files
for the Hibernate core. We recommend including the full version number in the library name
so that you will be able to readily distinguish between versions if you are managing more than
one Eclipse project in the same workspace over an extended period of time. (Hibernate
updates come thick and fast!)

The library name will be added to the list of libraries, but it does not yet contain any JAR
files. You should select the library name in the list, and then click the Add Jars button.

You now want to add all the core Hibernate 3 JAR files to the library. You can add multiple
files, but not directories, so this must be carried out in two steps.

You will be presented with a normal file-selection dialog. You should navigate to your core
Hibernate install directory and select the hibernate3.jar file.

You should select the library name and again click Add Jars, but now navigate to the lib
subdirectory beneath the core Hibernate install directory. Select all the JAR files in this direc-
tory and add them to the library.

Having created the core Hibernate user library, you should repeat the process to create
the Hibernate Annotations user library with an appropriate version number.1 Figure B-5
shows part of an exploded view of the resulting pair of user libraries.

APPENDIX B ■ HIBERNATE TOOLS 269

1. Naturally, this step is not essential if you do not intend to use Hibernate annotations in your project.
Our example assumes throughout that you will be using annotations for the project’s mappings.

Figure B-5. The two user libraries

6935appB_final.qxd 8/2/06 9:15 PM Page 269

Having created it initially, Hibernate allows you to export your user library configuration
so that it does not need to be created afresh on each machine that you work on, or when creat-
ing a new Eclipse workspace.

You should now create a new Java project called ToolsExample. The source code for the
example is available from the Apress web site (www.apress.com). Copy the files into the
ToolsExample folder in the workspace directory, and refresh the project.

■Tip If Eclipse is running under a 1.4 JVM or earlier, and you want to take advantage of annotations, you
must reconfigure it to run under Java 5. Add the -vm flag to the Eclipse command line to force the named JVM
to load Eclipse. For example, the shortcut to Eclipse on my Windows desktop contains the following target:

C:\eclipse\eclipse.exe -vm c:\home\jdk1.5.0_03\bin\javaw

At the time of writing, Hibernate Tools contains a minor bug that causes some prob-
lems if the configuration file is in the project root. We have therefore configured the project
to contain separate src and bin directories. You should configure the project to use these as
the source folder and default output folder, respectively. We expect this bug to be fixed by
the time you read this book, but it is good practice to separate the directories in this way
anyway.

You now need to add the two user libraries to the project. Select the Build Path ➤ Config-
ure Build Path context menu option on the project. Select the Libraries tab on the resulting
dialog.

Click the Add Library button, and you will be presented with a list of library types. Select
the User Library option from the list, and click Next.

This will in turn present you with a list of the available user libraries. Check both of the
Hibernate libraries that you configured previously, and click Finish.

The libraries will be added to the list in the Libraries tab of the Java Build Path dialog; you
should click OK to accept the changes to the path. Figure B-6 shows the resulting uncluttered
project view.

So far in this section, we have configured a Java project in a conventional way. None of the
steps we have taken so far would be unusual in preparing to use a third-party library such as
the Spring Framework. The next few steps open a Hibernate Console perspective that will
allow you to manage the Hibernate-specific aspects of your project.

APPENDIX B ■ HIBERNATE TOOLS270

Figure B-6. The configured Java project

6935appB_final.qxd 8/2/06 9:15 PM Page 270

To open a new Eclipse perspective, you can either select the Window ➤ Open Perspective
menu option or click the Open Perspective icon.

Select the Other option from the resulting menu. This will present you with the list of
available perspectives. Select the Hibernate Console option from the resulting dialog.

Much as when entering the Eclipse debugging perspective, the layout of Eclipse will change,
with various Hibernate-specific views being opened (although you will still have access to the
Package Explorer as one of the tabbed options behind the new Hibernate configuration view).

To switch between the perspectives, you can select the Java or Hibernate Console per-
spective icons on the top right of the main Eclipse window (you may need to adjust the menu
layout slightly if these are obscured). Figure B-7 shows the icons for the Hibernate Console
and Java perspectives, with the Java perspective selected.

Using the Hibernate Console
With the project set up and the Hibernate Console perspective added to Eclipse, you can now
start using some of the Hibernate Tools plug-in features more directly.

Creating a Hibernate Console Configuration
The Hibernate Console represents a view onto the Hibernate object store. It therefore needs
the same basic configuration information as any other client of Hibernate. You will need a
Hibernate XML configuration file and/or a properties file (see Listing B-1).

Listing B-1. The Configuration File Used in Our Example: hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- The database settings -->
<property name="hibernate.connection.driver_class">

org.hsqldb.jdbcDriver
</property>
<property name="hibernate.connection.url">

jdbc:hsqldb:file:/workspace/ToolsExample/db/annotationsdb;shutdown=true
</property>

APPENDIX B ■ HIBERNATE TOOLS 271

Figure B-7. The Java and Hibernate Console perspective icons, with the Java perspective
currently selected

6935appB_final.qxd 8/2/06 9:15 PM Page 271

<property name="hibernate.dialect">
org.hibernate.dialect.HSQLDialect

</property>
<property name="hibernate.connection.username">sa</property>
<property name="hibernate.connection.password"/>
<property name="hibernate.connection.pool_size">0</property>
<property name="show_sql">false</property>

<!-- The class mappings for our example -->
<mapping class="com.hibernatebook.tools.Note"/>
<mapping class="com.hibernatebook.tools.Notepad"/>

</session-factory>
</hibernate-configuration>

If you are using the HSQLDB database in conjunction with Hibernate Tools, we recom-
mend that you use fully qualified path names (shown in bold in the preceding code) to avoid
possible clashes between the working directories and classpaths used by Ant, the Eclipse IDE,
and the Hibernate Console. In our example, we will be working with the annotations-based
mappings, so we use the mapping element with a class attribute to determine the mapped
classes. However, the console configuration will automatically find any correctly annotated
entity classes using reflection, so it is possible to omit these entries.

If you choose to use XML-based mappings, you can use the file attribute to specify the
mapping file instead, or specify the paths to the mapping files in the Hibernate configuration
entry used by the Hibernate Console.

Hibernate Tools provides a wizard to create the Hibernate configuration entry. To use the
wizard, select the File ➤ New ➤ Hibernate Console Configuration menu option, as shown in
Figure B-8.

This will bring up the Create Hibernate Console Configuration dialog page. This consists
of a simple form with three basic sections. In the first part of the form shown in Figure B-9, set
a suitable name for this configuration and the path to the Hibernate configuration file. You
should also tick the check box, as you will be using annotations for your mappings.

APPENDIX B ■ HIBERNATE TOOLS272

Figure B-8. Creating a new console configuration

6935appB_final.qxd 8/2/06 9:15 PM Page 272

The middle section of the form shown in Figure B-10 allows you to specify mapping files
for inclusion in the console configuration that are not explicitly included in the configuration
file. You would add entries here if your application added these options to the configuration at
run time instead of drawing the information from the configuration file (for example, if it only
used the properties file for its other configuration settings).

The last part of the form shown in Figure B-11 allows you to set the classpath entries that
will be used by the Hibernate Console. This must include the JDBC driver to access your data-
base and the location of your mapped POJO classes.

APPENDIX B ■ HIBERNATE TOOLS 273

Figure B-9. The Name and Configuration file settings

Figure B-10. The additional mapping file settings

Figure B-11. Setting the classpath

6935appB_final.qxd 8/2/06 9:15 PM Page 273

Click the Finish button, and you should now be able to see the configuration name in the
console configuration view.

Generating the Schema
Expand the ToolsExample entry that you created in the console configuration window. There
will be three nodes beneath it, as shown in Figure B-12.

The third of these is a view of the tables in the database that correspond to the entities
mapped in your console configuration (either explicitly or via the hibernate.cfg.xml file).
Unless your database contains preexisting tables, the database view will be empty when you
attempt to drill down into it, as shown in Figure B-13.

The Hibernate Console now has all of the entity mapping and database connection
information. It therefore offers a Run SchemaExport context menu option (accessed from
the Configuration node, not the Database node) to generate the appropriate tables (see
Figure B-14).

APPENDIX B ■ HIBERNATE TOOLS274

Figure B-12. The three nodes beneath ToolsExample

Figure B-13. The empty database view

Figure B-14. The Run SchemaExport context menu option

6935appB_final.qxd 8/2/06 9:15 PM Page 274

■Caution There are currently no safeguards built in here. If the configured database user has table dele-
tion privileges, running SchemaExport in this way will drop and re-create all of your tables with no further
warning!

If you select Run SchemaExport from this menu, the database view will be updated to
reflect the changes, and you will be able to drill down to view the individual table column
names and data types, as shown in Figure B-15.

■Note When you run SchemaExport for the first time, you may see error messages in the event log view
related to attempts to drop nonexistent tables. These result from unconditional DROP commands to remove
preexisting tables. They should go away if you run SchemaExport a second time—and assuming this is the
case, they can be safely ignored. As always, given that the tools are still beta versions at the time of writing,
this behavior may have improved by the time you read this book.

This view does not offer the sort of comprehensive access to the database metadata that
is available from some tools, and it does not permit you to directly change any of the features.
It does, however, offer a useful visual confirmation that the appropriate tables and columns
have been created.

Running the Test Program
For the purpose of generating some test data for manipulation in the remainder of this sec-
tion, we have created a test application (available with the other source code for this book on
the Apress web site) to populate the database with some suitable records. Now that you have
created an appropriate database schema, it is possible to run this application.

Switch back to the Java perspective and add a new Java Application run configuration for
the PopulateNotes class. You will need to add the path to your JDBC driver to the configuration
on the Classpath tab.

APPENDIX B ■ HIBERNATE TOOLS 275

Figure B-15. A column-level view of the newly generated database

6935appB_final.qxd 8/2/06 9:15 PM Page 275

Now run the application. You should see the following output, which confirms that a
Notepad entity and 100 associated Note entities have been persisted to the database:

Creating test notepad...
Test notepad created.

You can now switch back to the Hibernate Console perspective in order to browse this data.

Browsing the Model
Back in the Hibernate Console perspective, you can access the contents of the object model
using the Session Factory node of the console configuration view. This node is named after the
SessionFactory object created and maintained internally by the Hibernate Eclipse plug-in
tools when you drill down into the console configuration view.

■Tip If you manage to put the internal SessionFactory object into a bad state, it is possible to close
and re-create it from the configuration view’s context menu when the configuration view is collapsed to
a single node.

Opening the Session factory node, you will see nodes representing each of the mapped
classes. Drilling down further, you can see a representation of the mapped fields and attrib-
utes (along with a graphical representation of the association rules, primary keys, and so on,
where appropriate).

If you double-click the mapped class, all the instances of the class in the database will be
retrieved, and a toString representation will be displayed in the Hibernate Query Result view.

As you can see from Figure B-16, the generated HQL query to produce this information is
shown in a second tabbed pane (further queries will be added as new tabs within this window).
The column is numbered, as no column name can be specified. Note that we have overridden
the Notepad class’s toString() method to ensure that a human-readable representation of the
class contents is displayed in this view.

All results of queries generated manually or automatically through the Hibernate Console
perspective will be displayed in the Hibernate Query Result view.

APPENDIX B ■ HIBERNATE TOOLS276

Figure B-16. The Hibernate Query Result view of the mapped Notepad class

6935appB_final.qxd 8/2/06 9:15 PM Page 276

Testing HQL Queries
HQL is a powerful way to interact with the database; but traditionally, debugging errors in
these queries has been a long-winded process. Typically, a developer would end up creating a
unit test for the query and then spending considerable time tweaking it into working correctly.
Hibernate Tools now provides a query editor that allows you to prototype your HQL queries
and run them against the database without needing to write any code.

To run an HQL query, select HQL Scratchpad from the context menu for the project in the
configuration view (by default, this is to the left of the main window in the Hibernate Console
perspective).

A new editor window will be created and labeled with HQL and the name of the project—
in our example, it’s “HQL: ToolsExample.” This is an HQL editor with some context sensitivity.
Context sensitivity is activated with the Ctrl+Space key combination, as is usual for Eclipse
editors. For example, enter the following query in the scratch pad editor and press Ctrl+Space:

from Note

This will display a context menu offering the two class names that are legal at this point in
the query (as shown in Figure B-17).

■Caution At the time of writing, there are various bugs related to saving scratch pads to physical files,
and to running HQL queries loaded-in directly from text files. As a workaround, it is possible to copy and
paste between a scratch pad window and a normal text editor view in order to run queries. It is likely that
these problems will have been addressed by the time you read this.

As you create the query, the corresponding SQL query against the underlying relational
database is updated in the Hibernate Dynamic SQL Preview window shown in Figure B-18.

APPENDIX B ■ HIBERNATE TOOLS 277

Figure B-17. The context-sensitive scratch pad

Figure B-18. The Hibernate Dynamic SQL Preview window

6935appB_final.qxd 8/2/06 9:15 PM Page 277

The generated SQL will be visible whenever the HQL query is syntactically valid, allowing
you to confirm the basic correctness of the HQL and confirm the sanity of the underlying query
at the same time.

Once you have a satisfactory HQL query, it can be executed against the database to vali-
date the returned results. Enter the following query in the scratch pad window, and then click
the green play button above the editor window.

select note as Note_Entry
from Note
where id > 10 and id < 20

The view shown in Figure B-19 will list the results of the query. Note that the results have
been given the correct column heading.

Query Parameters
While the scratch pad alone is adequate for running stand-alone queries, much of the HQL
that you will use in practice in your applications will be parameterized. Consider the following
typical query:

select owner from Notepad where owner = :username

This query uses a named parameter, username, as a placeholder for the actual value. When
converted to SQL, this will become a parameter in a prepared statement, and will not be spec-
ified until the application is actually running.

The Hibernate Console provides the novel feature of allowing you to specify the values of
parameters in Hibernate queries of this type.2 This means that you can cut and paste an HQL
query from your code into the scratch pad, and test it there without having to edit any of the
parameters themselves.

If you paste the preceding query into a scratch pad window and try to run it as is, the con-
sole will log an appropriate error, warning you that the query parameters have not all been set
(currently this appears in the Hibernate Query Result view). On the right-hand side of the per-
spective’s default layout, there is a view called Query Parameters. Adjust the layout so that you
can see the three columns within this view, labeled Name, Type, and Value.

APPENDIX B ■ HIBERNATE TOOLS278

Figure B-19. The output from the query

2. If you’ve ever encountered problems debugging complex SQL queries, in which the process of manu-
ally substituting in parameters disguised the cause of the problem during testing, you will understand
why we are extremely enthusiastic about this ingenious feature!

6935appB_final.qxd 8/2/06 9:15 PM Page 278

With the query still in the scratch pad, click the icon shaped like the letter P (shown in
Figure B-20, just to the right of the Outline tab). A new row will be added to the view, repre-
senting the parameter in the query. By editing the values in this row, you can change the
details of the parameter (both the value assigned to it and the type of that value).

If you edit the query parameter row so that it contains the data shown in Figure B-20, run-
ning the query will return results equivalent to those produced by the following code fragment:

Query query = session.createQuery(
"select owner from Notepad where owner = :username");

query.setString("username","Dave Minter");
List results = query.list();

All the standard Hibernate types are available to you, and the console will log appropriate
errors when you try to execute queries that combine types in inappropriate ways for the
object model.

The Entity Model
If you select the Hibernate Entity Model view (usually located as a tab option in the view at the
bottom right-hand corner of the Hibernate Console perspective) for the project, and then
select the Configuration node of the configuration view, a graphical representation of the enti-
ties in the model will be displayed in the Entity Model view, as shown in Figure B-21.

The view allows you to place the entities using the mouse or lay them out automatically.
You can zoom into or out of the view, and you can print its contents. At the time of writing,
this feature is quite primitive and is therefore of limited use.

APPENDIX B ■ HIBERNATE TOOLS 279

Figure B-20. Assigning a typed value to the id query parameter

Figure B-21. The Entity Model view of our model

6935appB_final.qxd 8/2/06 9:15 PM Page 279

Generating a Mapping File
Hibernate Tools provides a wizard to make the creation of the boilerplate XML mapping file
contents simpler. You can access the wizard via the File ➤ New ➤ Hibernate XML Mapping
File menu option from within the Hibernate Console perspective.

This brings up a standard Eclipse view in which you select the name and location of the
generated mapping file.

Clicking Next then brings you to a dialog that requires you to enter the fully qualified name
of the class that the mapping file will represent.

If you cannot recall the specific package and class name details, you can use the Browse
button to select the class from the class hierarchy.

The boilerplate mapping file will be created in the appropriate location. The wizard does
not currently populate this with any of the property or association mapping details. The gen-
erated file is therefore incomplete and can only be used as a skeleton to be filled in manually.
The sample output for our example Bookshelf class (which is not annotated) follows.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.hibernatebook.tools">
<class name="Bookshelf">
</class>

</hibernate-mapping>

The Hibernate Tools plug-in for Eclipse includes an editor for its various mapping files that
provides context-sensitive completion—this is based upon the Web Tools Platform’s (WTP) sup-
port for XML files, but adds awareness of mapping file details beyond the support for the basic
DTD description that WTP provides.

Generating a Configuration File
Hibernate Tools provides another wizard to aid in the creation of a Hibernate configuration
XML file. This wizard is accessed from the File ➤ New ➤ Hibernate Configuration File menu
option from within the Hibernate Console perspective.

This wizard prompts you (as with the mapping file wizard) to specify a path and file name
for the generated configuration file. You don’t want to overwrite the configuration file used by
our sample application, so for this exercise, specify a file name of example.hbm.xml in the root
of the project directory.

Clicking the Next button will then take you to the dialog shown in Figure B-22, in which
all the basic configuration properties can be specified. When possible, a set of default options
are provided as combo box lists. The “Database dialect” field presents the dialects in a more
human-readable format, and also filters the Driver class and Connection URL fields to the
likely options.

APPENDIX B ■ HIBERNATE TOOLS280

6935appB_final.qxd 8/2/06 9:15 PM Page 280

All the values selected in the drop-down menus can be overtyped if the option you need is
not listed. (Note that we have amended the connection URL with our preferred HSQLDB con-
nection details.) You can type in the fully qualified dialect class name instead of choosing from
the short names available from the drop-down list.

At this point, you also have the option of selecting the Create a console configuration
check box. If you do so, the Hibernate Configuration File wizard will pass you to the Hibernate
Console Configuration wizard (and will automatically populate the configuration file field).
However, since we’ve already discussed this earlier in the chapter, leave the check box empty
and click Finish.

The resulting example.cfg.xml file is shown in the following code (slightly reformatted to
ensure that it fits on the page). Unlike the generated mapping files, this configuration file is
pretty much ready to use if you plan to use programmatic configuration of your application,
or if you are using it purely as the basis of a Hibernate Console configuration to connect to an
existing Hibernate database.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property name="hibernate.connection.driver_class">
org.hsqldb.jdbcDriver

APPENDIX B ■ HIBERNATE TOOLS 281

Figure B-22. Selecting default values for the configuration file

6935appB_final.qxd 8/2/06 9:15 PM Page 281

</property>
<property name="hibernate.connection.url">

jdbc:hsqldb:file:exampledb;SHUTDOWN=true
</property>
<property name="hibernate.connection.username">sa</property>
<property name="hibernate.dialect">

org.hibernate.dialect.HSQLDialect
</property>

</session-factory>
</hibernate-configuration>

The Reverse Engineering and Code Generation Tools
The last Hibernate Tools wizard is for the reverse engineering tool. This allows you to extract
the schema information from the database into an XML file. Additional information can be
added to this file using a tabbed control panel, which allows it to be used in the generation of
source code using the Hibernate Code Generation tool (accessed separately from the wizard).

This wizard is accessed from the File ➤ New ➤ Hibernate Reverse Engineering File menu
option from within the Hibernate Console perspective.

This then prompts you to specify a path and file name for the generated reverse engineer-
ing file. Select the default file name and location within the ToolsExample project.

When you are done, you have the option of selecting either Finish or Next. If you select
Finish, the wizard will assume that you want to use the details of all the tables in your data-
base when creating the reverse engineering file. Alternatively, if you click Next, you have the
opportunity to specify the individual tables and columns that should be included (as shown
in Figure B-23).

APPENDIX B ■ HIBERNATE TOOLS282

Figure B-23. Selecting the tables to reverse engineer

6935appB_final.qxd 8/2/06 9:15 PM Page 282

In Figure B-23, we have selected all the tables anyway. Once you click Finish, the reverse
engineering file will be generated, and an editor will be opened for it. This is a tabbed view of
the XML file (the last tab shows the XML source code). This allows you to change the default
mappings between the database and Hibernate types, to alter the table and column details,
and to apply additional filters to the file itself that dictate which details will be ignored when
generating output from the reverse engineering file.

We would not recommend trying to get to grips too closely with the reverse engineer-
ing tool until you have some experience in creating mappings manually—the various
settings will seem quite opaque when taken out of context. Once you have created a few
simple entity models from scratch, however, the need for the various options should
become clearer.

In order to actually generate output from the tool, you will need to create a Hibernate
code generation configuration by selecting the option in the toolbar of either perspective, as
shown in Figure B-24.

■Note At the time of writing, the Hibernate Code Generation icon does not seem to be added to the Eclipse
toolbar when you install the plug-in. This will probably be fixed by the time you read this book, but if not, you
may have to use the JBoss IDE download or an Ant task if you want to take advantage of these features.

The Code Generation tool allows you to create various different configurations for gener-
ating files based upon your reverse engineering XML file(s). The tool can output the following:

• Ordinary POJOs

• POJOs using generics

• POJOs using EJB 3 annotations (with or without generics)

• DAO objects

• XML mapping files

• Hibernate configuration files

• HTML documentation of the database schema

It also permits you to create a JBoss Seam skeleton application, but this functionality lies
well outside the scope of this book.

APPENDIX B ■ HIBERNATE TOOLS 283

Figure B-24. Selecting the Hibernate Code Generation configuration tool

6935appB_final.qxd 8/2/06 9:15 PM Page 283

The only missing output is the database schema. The reverse engineering file can be gen-
erated from the database as we have described here, but it can also be created manually. We
have already shown that it is possible to use the Hibernate Console’s SchemaExport function
to export an annotated POJO or mapping file into a database schema. So, using this function-
ality, it is possible to create pretty much everything from scratch, starting from a mapping, a
database, or a set of POJOs.

When you create your code generation configuration, you need to specify the location of
your reverse engineering file, and the console configuration that will be used to establish the
appropriate connection details. You need to specify the output directory into which the gener-
ated files should be written, and you can also specify a package that any generated classes
should belong to.

You will then need to select the types of output to be generated, as shown in Figure B-25.

In Figure B-25, we have selected everything except the Hibernate configuration file
(we’ve already got one), the JBoss Seam application (we’re not interested in that), and—
because of a minor bug—the EJB 3 annotations option. You would not normally elect to
generate both annotations and XML mapping files anyway.

■Note At the time of writing, the EJB3/JSR-220 annotations exporter option does not work. If this problem
has not been fixed by the time you read this book, you can use an Ant task instead.

The Ant Tasks
As you will have noticed if you followed through the Eclipse discussion, our example project
for this appendix includes build.xml and build.properties files. These are not strictly neces-
sary when working with Eclipse, but it is often desirable to be able to build all the components

APPENDIX B ■ HIBERNATE TOOLS284

Figure B-25. Selecting the types of output to be generated

6935appB_final.qxd 8/2/06 9:15 PM Page 284

of a project outside the IDE. This can be useful in maintaining automated builds for regression
testing—and of course, not all Java IDEs offer integrated support for Hibernate anyway, while
most of them do offer support for the Ant build tool. And besides, you might not be using an
IDE in the first place!

The Ant tasks are part of the Hibernate Tools download, which is largely oriented
toward use as an Eclipse plug-in. The Ant tools themselves rely upon a set of three JAR files:
hibernate-tools.jar, freemarker.jar, and jtidy-r8-21122004.jar. The hibernate-
tools.jar file is currently only available as a download with the rest of the plug-in files.
You will find the JAR file within the ZIP file in a directory called plugins\org.hibernate.
eclipse_X.x.x.x\lib\tools, where the Xs are substituted for the Hibernate Tools version
number. The freemarker and jtidy JAR files will also be available from this directory. Since
these JAR files have no dependencies upon the other parts of the plug-in, you can copy
them to a directory with a less unwieldy name without further consequences.

How the Ant Tasks Work
Despite their diverse set of outputs, the Hibernate tasks actually all work in the same way. The
task is imported into Ant using the standard TaskDef element. This makes the Hibernate tools
libraries available to Ant itself, and allows you to select an appropriate element representing
the Hibernate tools to use in your script.

<taskdef
name="htools"
classname="org.hibernate.tool.ant.HibernateToolTask"
classpathref="classpath.tools"/>

The Hibernate Tools JAR file must be made available to Ant on the classpath—our exam-
ple uses a preexisting classpath declaration (referenced through its id of classpath.tools—
see the “Configuring the Classpath” subsection later in this section).

A standard Ant target is declared to contain the set of operations that you want to perform.

<target name="exportDDL" depends="compile">
…
</target>

Within the target with any other standard (or imported) Ant tasks, you can then include
the element that you declared using the <taskdef> element. The other Hibernate task ele-
ments are only applicable within this task element.

<target name="exportDDL" depends="compile">
<htools destdir="${sql}">
…
</htools>

</target>

This outermost task element accepts three attributes, as listed in Table B-1.

APPENDIX B ■ HIBERNATE TOOLS 285

6935appB_final.qxd 8/2/06 9:15 PM Page 285

Table B-1. The Daughter Elements of the Hibernate Tools Task

Attribute Description

classpath The path to use when locating libraries and configuration files.

destDir The base directory (relative to the build script’s own base directory) into which
any generated output will be written.

templatePath The path containing user-created template files (see the further discussion of
templates in the “Templates” section later in the chapter.)

Within the declared Hibernate task, a number of additional standard elements can be
created, consisting of a classpath declaration (an alternative to using the classpath attri-
bute), a set of configuration elements, and a set of exporter elements.

The classpath element and attribute are standard Ant features that allow you to bring
in any necessary resources used by the Hibernate tasks.

The clever bit of the Hibernate Ant task lies in the configuration elements. Declaring a
configuration task causes an appropriate configuration object to be built in memory. These
in-memory configuration objects all extend the standard org.hibernate.cfg.Configuration
class. The Configuration class represents the mapping relationships between entities (com-
bined with information from any configuration, properties, or reverse engineering files), and
it is this information, the metamodel, that is then used to generate the various output files.
The provided configuration elements can conjure up a Configuration object from the stan-
dard mapping files, from the metadata information gathered over a JDBC connection, and
from the annotations discussed in Chapter 6.

<target name="exportDDL" depends="compile">
<htools destdir="${sql}">

<annotationconfiguration
configurationfile="${src}/hibernate.cfg.xml"/>

…
</htools>

</target>

Within any given Hibernate Tools task, you can only have one configuration element con-
figured—normally, you would not want to generate output from two distinct representations
of the mapping information, so the single declaration is shared between the generation tasks
enclosed within the toolset task elements. The following list describes the configuration tasks
and the attributes of each:

• <configuration>: Mapping relationships are generated from conventional XML-based
mapping files and information in a *.cfg.xml or *.properties file.

• configurationfile: The name of the XML configuration file being used.

• propertyfile: The name of the properties file being used.

• entityresolver: The name of the SAX EntityResolver to use when resolving “exter-
nal” XML entities (rarely used).

• namingstrategy: A naming strategy to use (see Chapter 3) to establish table names
from entity names.

APPENDIX B ■ HIBERNATE TOOLS286

6935appB_final.qxd 8/2/06 9:15 PM Page 286

• <annotationconfiguration>: Mapping relationships are generated from the EJB 3 and
Hibernate 3 annotations in conjunction with a *.cfg.xml or *.properties file.

• Identical to <configuration>.

• <jdbcconfiguration>: Mapping relationships are generated from the schema metadata
obtained over a JDBC connection. The connection details are configured from a prop-
erties file.

• All those from <configuration>, plus the following:

• packagename: The name of the package that entities should belong to.

• reversestrategy: The fully qualified name of a class implementing the org.
hibernate.cfg.reveng.ReverseEngineeringStrategy interface. This is the pro-
grammatic equivalent of the reveng.xml file approach.

• revengfile: The name of a reverse engineering file to use when processing meta-
data information. See the discussion later in this section.

• <ejb3configuration>: Mapping relationships are generated from the EJB 3 and Hiber-
nate 3 annotations in conjunction with an EJB 3–compliant persistence.xml file.

• entityresolver: The name of the SAX EntityResolver to use when resolving “exter-
nal” XML entities.

• namingstrategy: A naming strategy to use (see Chapter 3) to establish table names
from entity names.

The <configuration> element also allows you to specify a standard Ant <fileset> of
*.hbm.xml mapping files. If you use this in conjunction with a *.cfg.xml configuration file,
you must not permit any mapping resources to be duplicated, as this will result in duplicate
import mapping exceptions.

Your choice of configuration element will be driven by the data sources that you have
available to you. For example, if you have created your XML mapping files, you will want to
use the standard configuration element, but if you have only a normalized database, you will
want to generate the mapping information from this using the JDBC configuration (although
you may well choose to create a reverse engineering file to control this).

Once you have correctly configured an annotation object, however, you can generate any
of the other resources that you might need using one or more exporter elements. These are
listed in Table B-2.

Table B-2. The Available Exporter Elements

Element Description

<hbm2ddl> Generates tables from the metamodel

<hbm2cfgxml> Generates a *.cfg.xml configuration file from the metamodel

<hbm2java> Generates entity POJOs from the metamodel

<hbm2hbmxml> Generates Hibernate *.hbm.xml mapping files from the metamodel

Continued

APPENDIX B ■ HIBERNATE TOOLS 287

6935appB_final.qxd 8/2/06 9:15 PM Page 287

Table B-2. Continued

Element Description

<hbm2doc> Generates HTML documentation for the database schema from the metamodel

<hbm2dao> Generates standard DAOs from the metamodel

<hbmtemplate> Generates arbitrary user-defined output from the metamodel

<query> Runs arbitrary HQL queries against the database using the mapping information
in the metamodel

You may notice that the exporters available as Ant tasks correspond fairly closely to the
exporters available in the Hibernate Code Generation tool—largely because they rely upon
the same underlying implementations.

The two most commonly used tasks are <hbm2ddl>, which can generate a database
schema directly from the *.hbm.xml mapping files, and <hbm2hbmxml>, which, conversely, can
generate mapping files directly from the database.

The <hbm2ddl> element generates DDL scripts from the metamodel. These can be written
to a file—or, if the configuration object is provided with database connection details, they can
be run directly against the database. Table B-3 shows the attributes that can be supplied.

Table B-3. The Attributes Available to the <hbm2ddl> Element

Property Default Description

create true If set to true, causes the generated DDL to include commands to
create database objects. This allows to distinct tasks to be created:
one to drop all relevant database objects (using the drop attribute)
and the other to create them.

console true If set to true, causes the generated DDL to be displayed on the
console.

delimiter ; Specifies the delimiter to be used to separate DDL statements.

destdir If set, overrides, for this exporter only, the destination directory
specified on the tools task.

drop false If set to true, causes the generated DDL to include commands to drop
preexisting database objects before it tries to create them. This may
cause warning messages, depending upon the preexisting state of the
database; and it of course has the potential to destroy existing data.

export true If set to true, causes the DDL to be run directly against the data-
base (this has the potential to delete data—do not use carelessly).

format false If set to true, causes the generated DDL to be formatted using
whitespace in a more readable fashion. We recommend using this
option if you will be writing the DDL to a file.

haltonerror false If set to true, causes the script to halt if an error is encountered
while generating the DDL (typically, this is used while exporting
directly to the database to increase the visibility of any problems
encountered while setting up the schema).

outputfilename Specifies the name of the file name that the generated DDL should
be stored in. If left unset, the generated DDL will not be stored.

update false Indicates that the tool should attempt to generate the appropriate
statements to bring the existing schema inline with the model. We
don’t recommend using this option.

APPENDIX B ■ HIBERNATE TOOLS288

6935appB_final.qxd 8/2/06 9:15 PM Page 288

The task shown in Listing B-2, which completes the simple example that we’ve been
building up in this section, creates a schema generation script from the annotation-based
mappings referenced in the project’s hibernate.cfg.xml file.

Listing B-2. A Complete Hibernate Mapping Target

<target name="exportDDL" depends="compile">
<htools destdir="${sql}">

<annotationconfiguration
configurationfile="${src}/hibernate.cfg.xml"/>

<hbm2ddl
create="true"
drop="true"
format="true"
export="true"
outputfilename="${ant.project.name}.dll"/>

</htools>
</target>

The <hbm2cfgxml> element generates a Hibernate XML configuration file from the meta-
model information. Table B-4 shows the attributes that can be supplied.

Table B-4. The Attributes Available to the <hbm2cfgxml> Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory
specified on the tools task.

ejb3 false By default, causes entities to be mapped using <mapping
resource="..."/> entries in the configuration file. If set to true, the
entities will be mapped using the <mapping class="..."/> approach to
pick up EJB 3 annotations in the mapped classes. This setting does not
cause a persistence.xml file to be generated!

Typically, the <hbm2cfgxml> element is used when the configuration task has been config-
ured from a properties file—for example, when using <jdbcconfiguration>, you would typically
start with a normalized database schema and a properties file containing the connection details,
and use this exporter to create a hibernate.cfg.xml file containing both the connection details
and the details of the mapped entities.

The <hbm2java> element generates the Java source code for POJOs for each of the entities
held in the metamodel. Table B-5 shows the attributes that can be supplied.

Table B-5. The Attributes Available to the <hbm2java> Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory speci-
fied on the tools task

ejb3 false If set to true, causes the POJOs to be generated with EJB 3 annotations

jdk5 false If set to true, causes the POJOs to be generated with Java 5 constructs
(generics, enumerations, etc.)

APPENDIX B ■ HIBERNATE TOOLS 289

6935appB_final.qxd 8/2/06 9:15 PM Page 289

This exporter can be used to permit the mapping file–based creation of suitable classes,
or to create classes from the database schema when <jdbcconfiguration> is used.

The <hbm2hbmxml> element generates the XML mapping files from the information con-
tained in the metamodel. Table B-6 shows the attributes that can be supplied.

Table B-6. The Attributes Available to the <hbm2hbmxml> Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory specified
on the tools task

This exporter is particularly terse because it only writes out the mapping information
stored in the metamodel. This is all handled by the appropriate configuration element. The
<hbm2hbmxml> exporter just needs to know which path to write the XML files into. And that can
be specified at the Hibernate tool level. A fairly typical invocation of this exporter is, in its
entirety, the ridiculously simple <hbm2hbmxml/>.

The <hbm2doc> element generates HTML documentation of the schema and entities in
a style similar to the familiar javadoc output. Table B-7 shows the attributes that can be
supplied.

Table B-7. The Attributes Available to the <hbm2doc> Exporter Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory specified
on the tools task

The <hbm2dao> element generates a set of basic DAO classes—one for each of the entities
in the metadata. Table B-8 shows the attributes that can be supplied.

Table B-8. The Attributes Available to the <hbm2dao> Exporter Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory specified
on the tools task

By default, these DAO classes will be named after your entity, suffixed with Home. The gen-
erated DAOs provide a set of methods roughly corresponding to the methods available on the
Session interface, but strongly tied to the entity type. While the generated DAOs can provide a
useful foundation for your own more specific DAOs, we generally find that they offer little
value beyond that already offered from the standard Session interactions.

■Note Nothing in any of the exporters intrinsically stops you from generating “silly” combinations of output—
but this has its advantages; for example, it is possible to use an <annotationsconfiguration> configuration
element with the <hbm2java> exporter to generate POJOs. While that might seem pointless, given that you have
to start with POJOs to use an annotations-based configuration in the first place, it actually provides the useful
ability to generate Java 1.4–compatible source code from annotated Java 5 class files!

APPENDIX B ■ HIBERNATE TOOLS290

6935appB_final.qxd 8/2/06 9:15 PM Page 290

In principle, the <query> element allows you to specify an arbitrary HQL query that will be
run against the database using the configuration’s mapping information. Table B-9 shows the
attributes that can be supplied.

Table B-9. The Properties Available to the <query> Exporter Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory specified
on the tools task.

destfile If set, specifies the file into which the output of the queries will be writ-
ten. If left unset, the query is carried out, but the output is not saved.

The HQL query itself is included as the body of the <query> element.

<query destdir="output" destfile="sql.log">
select n.owner from Notepad n

</query>

If you want to include multiple SQL queries in the task, you can include multiple nested
<hql> elements thus:

<query destdir="output" destfile="sql.log">
<hql>select n.owner from Notepad n</hql>
<hql>select n.owner from Note n</hql>

</query>

Reverse Engineering
As we discussed in the previous section, the <jdbcconfiguration> task can be used to create
a configuration metamodel directly from a database schema. However, a database schema is
not necessarily an exact match for the entity mappings that we want to create. It may contain
tables and columns that we would prefer to omit from our entities. It may also lack some of
the information that we want to express. For example, database types such as VARCHAR do not
map exactly to Java types such as char[] and java.lang.String, and the tables will have names
that do not conform to the Java naming conventions.

Used as is, the <jdbcconfiguration> task will select sensible defaults for the type names,
and will assign the reverse-engineered tables suitable Java names derived from the table
names. It also provides an attribute to allow you to directly specify a suitable package name.
Even so, we would really like more control over the specifics of the reverse engineering process.
Note that while it also provides a naming strategy attribute, this has no effect during the reverse
engineering process, as naming strategy classes can only be used to determine schema names
from mapping information, not vice versa.

Hibernate provides two ways in which this process can be controlled—you can specify
one of two attributes on the <jdbcconfiguration> task to override the default behavior.

APPENDIX B ■ HIBERNATE TOOLS 291

6935appB_final.qxd 8/2/06 9:15 PM Page 291

The reversestrategy attribute allows you to specify the fully qualified class name of
a custom implementation of the org.hibernate.cfg.reveng.ReverseEngineeringStrategy
interface. This interface defines methods that can be used to select the following:

• Class names from table details

• Property names from column details

• One-to-many associations from foreign key relationships

• Many-to-one associations from foreign key relationships

• Inverse relationships from foreign key relationships

• Lazy loading details from foreign key relationships

• Collection attribute names from foreign key relationships

• Entity names from foreign key relationships

• Tables and columns to include and exclude

• Primary key columns from table details

• The column to use for optimistic locking strategies

• Composite ID details from table details

It also allows you to provide information about how schemas should be generated from
the resulting metamodel. This information is as follows:

• Additional foreign key relationships

• The table naming strategy to be used

The disadvantage of this approach to managing the reverse engineering process is that it is
not particularly flexible, and it requires a lot of coding. Reverse engineering is often carried out
only once to establish the mappings, with the schema thereafter being driven from the map-
pings, rather than being used to create them. The Hibernate tools therefore provide a second
mechanism for controlling the reverse engineering process by specifying an XML configuration
file using the revengfile attribute of the <jdbcconfiguration> task. This provides nearly the
same degree of control, but is much simpler to create—especially if you intend to manipulate
only minor details of the process.

The output of the reverse engineering tool described in the “The Reverse Engineering and
Code Generation Tools” section is actually a reverse engineering XML file following this for-
mat. A very simple example reverse engineering file is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering
PUBLIC "-//Hibernate/Hibernate Reverse Engineering DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd"
>

APPENDIX B ■ HIBERNATE TOOLS292

6935appB_final.qxd 8/2/06 9:15 PM Page 292

<hibernate-reverse-engineering>
<table-filter match-schema="PUBLIC" match-name="NOTE"/>
<table-filter match-schema="PUBLIC" match-name="NOTEPAD"/>
<table-filter match-schema="PUBLIC" match-name="NOTEPAD_NOTE"/>

</hibernate-reverse-engineering>

The reverse engineering file in the preceding code limits the tables to be used when gen-
erating the mapping information from the schema to the three explicitly named tables (NOTE,
NOTEPAD, and NOTEPAD_NOTE) in the database’s public schema.

A reverse engineering file always consists of a single top-level <hibernate-reverse-
engineering> element containing various additional elements. These daughter elements are
given in order in Table B-10:

Table B-10. The Elements Used in Configuring the Reverse Engineering File

Element Cardinality Description

<schema-selection> Zero or more Allows the reverse engineering process to be limited
by catalog, schema, and table name

<type-mapping> Zero or one Allows you to override the default mapping between
database types and Java types

<table-filter> Zero or more Allows you to include or exclude tables by catalog
name, schema name, and table name, and allows
them to be grouped into a particular package

<table> Zero or more Allows you to override the default mappings of tables
into entities

Rather than trying to exhaustively specify the syntax of a reverse engineering file, which is
anyway available through the DTD at http://hibernate.sourceforge.net/hibernate-reverse-
engineering-3.0.dtd, we think it is easier to follow the basic requirements of the file format
with some examples of valid <schema-selection>, <type-mapping>, <table-filter>, and <table>
elements.

Our first example specifies the following rule: tables should only be used for reverse engi-
neering if they are in the public schema and their names begin with NOTE:

<schema-selection match-schema="PUBLIC" match-table="NOTE*"/>

Our next example enforces a rule that database INTEGER types for which the column is
specified as NOT NULL must be represented using Hibernate’s int type. It also enforces a rule
that database VARCHAR types that have a specified length of 250 should be treated as Hibernate
string types.

<type-mapping>
<sql-type jdbc-type="INTEGER" hibernate-type="int" not-null="true"/>
<sql-type jdbc-type="VARCHAR" hibernate-type="string" length="250"/>

</type-mapping>

These type mappings apply throughout the reverse engineering process—you cannot
specify them on a per-table basis using the <type-mapping> element, but you can using the
<table> element.

APPENDIX B ■ HIBERNATE TOOLS 293

6935appB_final.qxd 8/2/06 9:15 PM Page 293

The <table-filter> element allows you to include and exclude groups of tables from
the mapping process on the basis of pattern matches on their names. Where the <schema-
selection> element allows you to specify a set of tables matching a single pattern to be reverse
engineered, the <table-filter> element operates within this and allows multiple patterns to
be applied to include and exclude tables. Here’s an example:

<table-filter match-name="NOTEPAD_ARCHIVE*" exclude="true"/>

Although the previous <schema-selection> element included all tables within the current
schema that matched the pattern NOTE*, this table filter excludes any tables that match the
pattern NOTEPAD_ARCHIVE* from reverse engineering. Table filters are applied in order, so using
this technique, you can build up a filter that only includes a specific set of tables.

The <table> task permits almost total control over the mapping details of the entity. You
can select a specific table by catalog, schema, and name. You can specify the class name that
it should take, how the primary key column(s) relate to that class’s properties, the primary
key generator that it should use, the column types and properties that they are associated
with, and the details of the associations formed by foreign key relationships. Our simple
example places the generated entity into an appropriate class, with a nonstandard primary
key property name and a nonstandard type mapping for one of the columns (note). It also
excludes one of the columns (audit) from the entity model.

<table schema="PUBLIC"
name="NOTEPAD"
class="com.hibernatebook.tools.Notepad">

<primary-key>
<column name="id"

jdbc-type="INTEGER"
property="notepadPk"
type="int"/>

</primary-key>
<column name="note" jdbc-type="VARCHAR" type="char" property="note"/>
<column name="audit" exclude="true"/>

</table>

If it looks like you will have to manage the reverse engineering process to this level of
detail, it may in fact be more appropriate to create some or all of the mapping files manually,
which gives you total control over the specification of those entities. Complex specification of
mapping information in the reverse engineering file is really only appropriate if it is for excep-
tional classes when the general cases are common; or if you expect to need to regenerate the
model from the schema very frequently in response to changes in the schema details.

Templates
With the exception of <hbmtemplate> and <query>, all the Ant exporter tasks take the meta-
model information from the configuration, pass it to a set of FreeMarker templates, and write
the output to files. For more information on the FreeMarker template scripting language, see
the FreeMarker site at http://freemarker.sourceforge.net.

APPENDIX B ■ HIBERNATE TOOLS294

6935appB_final.qxd 8/2/06 9:15 PM Page 294

■Note Earlier versions of Hibernate Tools used the Velocity template language instead of FreeMarker, but
in other respects, they behaved in the same way.

If the existing exporters do not meet your needs, you can specify your own additional
code generation tasks using the <hbmtemplate> task. Table B-11 shows the attributes that can
be supplied to this task.

Table B-11. The Properties Available to the <hbmtemplate> Exporter Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory
specified on the Hibernate tool task.

exporterclass Specifies a class to use to generate output. It will be invoked
once only, and the configuration object, output directory, tem-
plate path and prefix, and any configuration properties will be
passed into it.

filepattern When using templates, represents the FreeMarker macro that
should be used to determine the file name for the entity being
processed.

template Specifies the template to use to generate output. It will be invoked
for each of the entities in the configuration metamodel.

templatepath Specifies the path from which your template(s) will be loaded,
overriding any default location.

templateprefix Specifies an optional prefix to your template file name within
the template path. It is set by the standard tasks, so overriding
this allows you to import your own tasks instead.

Again, you have two options when carrying out this process. You can set the exporterclass
attribute to the name of the class to be used to carry out the export process. This class must
implement the org.hibernate.tool.hbm2x.Exporter interface. This is passed a reference to the
current configuration object and any other attributes that were set on the <hbmtemplate> task.

Alternatively, you can specify the name of a FreeMarker template to be used in processing
the configuration object and the name of a prefix.

<hbmtemplate
destdir="generated_txt"
templateprefix="foo"
template="template/MyTemplate.ftl"
filepattern="{package-name}/{class-name}.txt">

Note that filepattern contains FreeMarker macros that will be expanded at run time to
determine the appropriate file names for the tool’s output. The task will search for this file on
the classpath, and then as a file resource.

If the configuration object does not contain some of the information that you need in
order to produce the desired output, you can also specify additional arbitrary details using
a standard Ant property or property set. Here’s an example:

APPENDIX B ■ HIBERNATE TOOLS 295

6935appB_final.qxd 8/2/06 9:15 PM Page 295

<hbmtemplate …>
<property key="bar" value="BAR!"/>

</hbmtemplate>

In addition to any properties you add to the template task yourself, you will have access to
the scripting variables listed in Table B-12.

Table B-12. The Standard Scripting Variables Available to a Template Task

Variable Description

artifacts An instance of org.hibernate.tool.hbm2x.ArtifactCollector that can be pop-
ulated with values to reflect the actions taken during output generation

c2h An instance of the org.hibernate.tool.hbm2x.Cfg2HbmTool class providing
helper methods for converting configuration object values into Hibernate
mapping files

c2j An instance of the org.hibernate.tool.hbm2x.Cfg2JavaTool class providing
helper methods for converting configuration object values into Java class files

cfg A reference to the configuration object

outputdir The path specified as the <hbmtemplate> element’s destdir attribute

template_path A list of the paths to directories containing FreeMarker templates

The standard Hibernate Tools exporter tasks are implemented in much the same way.
Although we haven’t shown this when discussing their attributes earlier, all the exporter tasks
support the templatepath and templateprefix attributes, allowing you to override their default
behavior by instructing them to use a different set of FreeMarker macros than those included
in the hibernate-tools.jar file. All attributes also support the use of property sets to pass in
information that is required by your custom macros but isn’t available from the configuration
object.

A very simple FreeMarker script is shown in the following code. This is not very useful in
itself, as the first four variables simply display their hashcode representations from the default
toString() implementation, but it provides you with a syntactically valid starting point for
exploration of the code generation tools.

Configuration object: ${cfg}
Artifacts object: ${artifacts}
Cfg2Hbm Helper: ${c2h}
Cfg2Java Helper: ${c2j}
Output Directory: ${outputdir}
Template path: ${template_path[0]}

Configuring the Classpath
There are two distinct classpaths to consider when setting up the Hibernate Tools Ant tasks:
the classpath of the task definition, and the classpath to be used by the tasks. The task defini-
tion needs to have in its classpath the Hibernate Tools JAR file, the Hibernate libraries, the
Hibernate Annotations libraries, and the JDBC driver that will be used to access the database.
A typical configuration of this classpath is as follows:

APPENDIX B ■ HIBERNATE TOOLS296

6935appB_final.qxd 8/2/06 9:15 PM Page 296

<path id="classpath.base">
<pathelement location="${hibernate.path}"/>
<fileset dir="${hibernate.lib}" includes="**/*.jar"/>

<pathelement location="${hibernate.annotations.path}"/>
<fileset dir="${hibernate.annotations.lib}" includes="**/*.jar"/>

</path>
<path id="classpath.tools">

<path refid="classpath.base"/>
<pathelement location="${hibernate.tools.path}"/>
<pathelement location="${jdbc.driver.path}"/>

</path>

The task definition (as shown earlier in this section) would use the classpath with the ID
classpath.tools.

The tasks themselves will need access to two additional sets of resources: the configura-
tion file(s) and the compiled classes.

<path id="classpath.apps">
<path refid="classpath.base"/>
<pathelement path="${src}"/>
<pathelement path="${bin}"/>
<pathelement location="${jdbc.driver.path}"/>

</path>

The configuration files will include the hibernate.cfg.xml and/or hibernate.properties
files, along with any log4j configuration files, cache configuration files, and applicable XML
mapping files.

If you are using annotations in any of your tasks, you will need to ensure that the task is
assigned a dependency upon the compiled POJOs—annotations cannot be read at run time
from Java source files, only from compiled classes.

Summary
In this appendix, we have discussed the installation and use of Hibernate Tools, including the
Eclipse plug-in and the Ant tasks. Together, these remove most of the need to manually create
boilerplate configuration code.

In Appendix C, we discuss how Hibernate can be used as the data access layer within the
Spring Framework.

APPENDIX B ■ HIBERNATE TOOLS 297

6935appB_final.qxd 8/2/06 9:15 PM Page 297

6935appB_final.qxd 8/2/06 9:15 PM Page 298

Hibernate and Spring

The Spring Application Framework offers developers an environment that ties together
numerous APIs into a coherent whole. Spring applies the philosophy of “dependency injec-
tion” by providing appropriate configurable wrapper classes for all sorts of popular Java
libraries.

The standard Spring API is immense, and its standardized approach to dependency
management means that any existing API can in principle become a “Spring” API. If you
want a good introduction to using Spring, then we recommend the excellent Pro Spring, by
Rob Harrop and Jan Machacek (Apress, 2005). For an overview, visit the Spring web site at
http://springframework.org.

In view of its scope, we cannot and do not make any attempt to teach you even the basics
of the Spring Framework in this appendix—instead, we assume that you are already familiar
with Spring in general, and offer a focused introduction to the Hibernate-related components.

Throughout this appendix, we refer to a simple sample application that represents a
“newsstand” of papers consisting of sets of articles. At the end of this appendix, we include
the complete Spring bean configuration file for the example application; and as with all the
examples in this book, the entire application itself can be downloaded from the Apress web
site (www.apress.com).

Spring Libraries
The Spring Framework essentially provides wrappers and utility classes for working with vari-
ous other frameworks, as well as some of its own implementations. For example, it provides its
own model-view-controller (MVC) patterned web application framework, and also supports
Struts and vanilla JSPs.

Spring is distributed as a small set of JAR files that contain the Spring-specific functional-
ity. The third-party components are made available with the “including dependencies” distri-
bution of Spring, but can also be downloaded independently from their respective web sites.

It is possible to copy all the libraries that Spring is capable of using into the classpath, but
this is a somewhat inelegant approach. We prefer to pick the core Spring JARs and add to them
only what is necessary to support the application being built.

For our example application, we have therefore included the following sets of libraries:

• The Hibernate JAR and its required dependencies

• The Hibernate Annotations JAR and its required dependencies

299

A P P E N D I X C

■ ■ ■

6935appC_final.qxd 8/2/06 9:17 PM Page 299

• The Java Standard Template Library JARs

• The HSQLDB driver JAR

• The Spring JAR

This requires the list of JAR files shown in Listing C-1 to be included in the WEB-INF/lib
directory of our example application.

Listing C-1. The Required JAR Files

antlr-2.7.6rc1.jar
asm-attrs.jar
asm.jar
cglib-2.1.3.jar
commons-collections-2.1.1.jar
commons-logging-1.0.4.jar
dom4j-1.6.1.jar
ehcache-1.1.jar
ejb3-persistence.jar
hibernate-annotations.jar
hibernate3.jar
hsqldb.jar
jdbc2_0-stdext.jar
jstl.jar
jta.jar
spring.jar
standard.jar
xml-apis.jar

Configuring Hibernate from a Spring Application
A conventional Hibernate application needs access to its database and the entity mapping
information. The point of access to a fully configured Hibernate environment is the session
factory, from which Session objects are obtained. Spring provides a bean to represent the
session factory, but provides a few additional options in order to configure its resources.

In our example application, we take the line of least resistance and use a Hibernate config-
uration file (hibernate.cfg.xml) to represent both the mapping information and the database
configuration. For easy reference when setting up a Spring application, we show a sample
Hibernate configuration file in Listing C-2.

Listing C-2. Familiar Territory: A Standard Hibernate Configuration File Used in Spring

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

APPENDIX C ■ HIBERNATE AND SPRING300

6935appC_final.qxd 8/2/06 9:17 PM Page 300

<hibernate-configuration>
<session-factory>

<property name="connection.driver_class">
org.hsqldb.jdbcDriver

</property>
<property name="connection.url">

jdbc:hsqldb:file:/spring/db/springdb;SHUTDOWN=true
</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>
<property name="hibernate.connection.pool_size">0</property>
<property name="show_sql">true</property>
<property name="dialect">org.hibernate.dialect.HSQLDialect</property>

<mapping class="com.hibernatebook.spring.Paper"/>
<mapping class="com.hibernatebook.spring.Article"/>

</session-factory>
</hibernate-configuration>

Spring represents the configured session factory as a LocalSessionFactoryBean. Our exam-
ple application uses annotations to manage the mappings, so we specify that the Hibernate
AnnotationConfiguration type should be used in our bean instead of the default Configuration.

■Caution Spring maintains two sets of Hibernate packages: org.springframework.orm.hibernate...
for Hibernate 2 functionality, and org.springframework.orm.hibernate3... for Hibernate 3 functional-
ity—a single-character difference. Be careful to select the correct one, as debugging the ClassNotFound
and similar exceptions that result if you use the wrong one can be extremely time-consuming!

We also specify the location and name of the configuration file relative to the classpath as
indicated by the classpath: prefix (see Listing C-3).

Listing C-3. Configuring a Session Factory Bean in Spring

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<property name="configurationClass"

value="org.hibernate.cfg.AnnotationConfiguration" />
<property name="configLocation"

value="classpath:hibernate.cfg.xml" />
</bean>

As noted, our simple web application derives its database connection details from the
Hibernate configuration file. However, a larger web application typically needs to provide
database resources to other applications, in which case a Hibernate-specific configuration file

APPENDIX C ■ HIBERNATE AND SPRING 301

6935appC_final.qxd 8/2/06 9:17 PM Page 301

is not the appropriate location for its details to be stored. Moreover, a well-behaved web appli-
cation will draw its database configuration from a JNDI-provided DataSource object so that
connection details can be uniformly managed at deployment time.

Spring allows data sources to be managed centrally as beans, and if a
JndiObjectFactoryBean bean is used, it can in turn draw its details from JNDI. The
LocalSessionFactoryBean therefore provides a dataSource property into which the appro-
priate Spring DataSource bean can be injected.

Typically, to manage a data source from within the Spring configuration, but without
deferring the details to a JNDI resource, you would use the DriverManagerDataSource bean
(see Listing C-4).

Listing C-4. Configuring a Typical BasicDataSource Bean

<bean id="sampleDataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource"
destroy-method="close">
<property name="driverClassName">

<value>org.hsqldb.jdbcDriver</value>
</property>
<property name="url">

<value>
jdbc:hsqldb:file:/spring/db/springdb;SHUTDOWN=true

</value>
</property>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>

Alternatively, if the data source resources are to be drawn from an existing JNDI-accessi-
ble data source, then the Spring JndiObjectFactoryBean should be used to represent the data
source (see Listing C-5).

Listing C-5. Configuring a Typical JndiObjectFactoryBean

<bean id="sampleDataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="java:comp/env/jdbc/spring"/>

</bean>

It is not just the connection details that can be migrated from the Hibernate configuration
file into the Spring configuration. The property attributes and the mappings (class names or
mapping file names) can also be assigned during the configuration of a LocalSessionFactory
bean (see Listing C-6).

APPENDIX C ■ HIBERNATE AND SPRING302

6935appC_final.qxd 8/2/06 9:17 PM Page 302

Listing C-6. Configuring Hibernate Purely from Spring

<bean id="sampleSessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<property name="dataSource" ref="sampleDataSource"/>
<property name="mappingResources">

<list>
<value>com/hibernatebook/spring/Paper.hbm.xml</value>
<value>com/hibernatebook/spring/Article.hbm.xml</value>

</list>
</property>
<property name="hibernateProperties">

<props>
<prop key="hibernate.connection.pool_size">0</prop>
<prop key="hibernate.show_sql">true</prop>
<prop key="hibernate.dialect">org.hibernate.dialect.HSQLDialect</prop>
</props>

</property>
</bean>

Note that in Listing C-6, purely in order to demonstrate the use of mapping files
in a LocalSessionFactoryBean configuration, we omit the specification of a Hibernate
AnnotationConfiguration for the configurationClass property, causing it to default to
the normal (mapping file–based) Hibernate Configuration object.

Typically, the mappings themselves are specified in the conventional Hibernate manner
through XML mapping files or Java annotations. It would be entirely possible to arrange to
configure these externally, but no default Spring classes are provided to achieve this, and it is
difficult to see any obvious benefit that would accrue from such an approach.

Using Hibernate in Your Spring Beans
With your session factory configured as a Spring bean, you can now go on to create DAOs that
take advantage of Hibernate’s functionality. Here, Spring really starts to come into its own, as it
provides you with the invaluable HibernateDaoSupport class to form the basis of your DAOs
(see Listing C-7).

Listing C-7. Declaring the Interface for Our DAO

package com.hibernatebook.spring.dao;

import java.util.List;
import com.hibernatebook.spring.Article;
import com.hibernatebook.spring.Paper;

APPENDIX C ■ HIBERNATE AND SPRING 303

6935appC_final.qxd 8/2/06 9:17 PM Page 303

public interface PaperDao {
public List<Paper> getAll();
public void createPaper(final Paper paper);
public Paper getPaper(final Integer paperId);
public Paper createArticle(final Integer paperId,final Article article);

}

Ideally, you should define an interface to specify the methods that your DAO will con-
tain. Our sample application requires a single DAO with a few simple methods (shown in
Listing C-7).

With the interface clearly specified, your DAO class should then extend the
HibernateDaoSupport class and implement the interface that you have defined. Extending
HibernateDaoSupport provides a number of get/set pairs for necessary Spring attributes
(specifically the sessionFactory attribute) and various helper methods for implementing
your DAO. A typical DAO method implementation using these methods is shown in
Listing C-8.

Listing C-8. Implementing getAll() Using the Methods from the HibernateDaoSupport Class

@SuppressWarnings("unchecked")
public List<Paper> getAll() {

Session session = getSession();
List<Paper> papers = (List<Paper>)session.createQuery("from Paper").list();
releaseSession(session);
return papers;

}

The getSession() and releaseSession() methods are derived from the DAO class. They
are roughly equivalent to the session factory’s openSession() method and the session’s close()
method, respectively.

The HibernateDaoSupport class also provides access to an appropriately configured helper
object: HibernateTemplate. Using this object, the preceding code can be rewritten as shown in
Listing C-9.

Listing C-9 Implementing the getAll() Method Using the HibernateTemplate Class

@SuppressWarnings("unchecked")
public List<Paper> getAll() {

return (List<Paper>)getHibernateTemplate().find("from Paper");
}

This notably reduces the amount of boilerplate session management code that is
required to process this simply query. HibernateTemplate provides a set of methods
(shown in Table C-1) that allow you to carry out most of the basic Hibernate operations
in a similar single line of code.

APPENDIX C ■ HIBERNATE AND SPRING304

6935appC_final.qxd 8/2/06 9:17 PM Page 304

Table C-1. The Core HibernateTemplate Methods

Method Description

bulkUpdate() Performs a bulk update or delete on the database, according to the provided
HQL query and entities

contains() Determines whether the given object exists as an entity in the database

delete() Deletes an entity from the database

find() Carries out an HQL query

get() Obtains an entity by its id (primary key)

persist() Saves an entity to the database

refresh() Refreshes an entity from the database

save() Saves an entity to the database

saveOrUpdate() Saves an entity to the database or updates it as appropriate

update() Updates an entity in the database

When a more complex set of operations is required than can be achieved in a single line,
the execute() method is used to invoke an instance of HibernateCallback. Our example appli-
cation uses HibernateCallback to implement its createArticle() method. This is shown in
Listing C-10.

Listing C-10. Invoking a HibernateCallback Object from the Template’s execute() Method

public Paper createArticle(final Integer paperId,final Article article) {
HibernateCallback callback = new HibernateCallback() {

public Object doInHibernate(Session session) {
Paper paper = (Paper)session.get(Paper.class,paperId);
paper.addArticle(article);
session.update(paper);
return paper;

}
};
return (Paper)getHibernateTemplate().execute(callback);

}

Although this allows us to invoke more complex code from the HibernateTemplate class,
and HibernateTemplate obviates the need for specific management of the session, it doesn’t
make the implementation particularly terse, and probably makes it slightly harder to under-
stand. Listing C-11 shows how the same method can be implemented without using
HibernateTemplate.

APPENDIX C ■ HIBERNATE AND SPRING 305

6935appC_final.qxd 8/2/06 9:17 PM Page 305

Listing C-11. The createArticle() Method Without HibernateTemplate

public Paper createArticle(final Integer paperId,final Article article) {
Session session = getSession();
Paper paper = (Paper)session.get(Paper.class,paperId);
paper.addArticle(article);
session.update(paper);
releaseSession(session);
return paper;

}

Regardless of how you use it, configuring your HibernateDaoSupport-derived template is
extremely simple. The basic requirement is that you provide its sessionFactory property with
a session factory bean from which to obtain Hibernate Session objects (see Listing C-12).

Listing C-12. Configuring a HibernateDaoSupport-Derived Bean

<bean id="sampleDao"
class="com.hibernatebook.spring.dao.PaperDaoImpl">
<property name="sessionFactory" ref="sessionFactory"/>

</bean>

In practice, however, this is usually made somewhat more complex by the need to declare
the transactional behavior that applies to the DAO’s methods.

Declarative Transaction Management
The getAll() method as implemented in Listings C-8 and C-9 omits any explicit transaction
management. It is entirely possible to manage transactions directly—you have access to the
Hibernate Session object, and this can be used as shown in Listing C-13.

Listing C-13. Explicit Transaction Management (Not Recommended)

@SuppressWarnings("unchecked")
public List<Paper> getAll() {

Session session = getSession();
session.beginTransaction();
List<Paper> papers = (List<Paper>)session.createQuery("from Paper").list();
session.getTransaction().commit();
releaseSession(session);
return papers;

}

However, while this is possible, it is not recommended—the use of OpenInViewInterceptor
or OpenInViewFilter can prevent this code from behaving as you might expect, as can various
other indirectly applied beans. This is equally applicable when you are using HibernateTemplate.

Because of these risks, you should favor the use of declarative transaction management.
With this, the beans’ methods are marked as being the boundaries of transactions, and the
appropriate transaction isolation level and propagation behavior can be specified.

APPENDIX C ■ HIBERNATE AND SPRING306

6935appC_final.qxd 8/2/06 9:17 PM Page 306

To support transactional behavior, a transaction manager bean must first be applied to
the session factory. Typically, this would be a HibernateTransactionManager in a self-contained
application, or a JtaTransactionManager in an environment in which the container is manag-
ing transactions. Our application uses the Hibernate transaction manager, as declared in
Listing C-14.

Listing C-14. Declaring the HibernateTransactionManager Bean

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref="sessionFactory"/>

</bean>

The transaction manager must be notified of the session factory in use so that it can
manage the transactions of the database connection configured in the session factory. If
you want to be able to use nested transactions so that multiple calls to transactional meth-
ods can be made from a method that is itself enclosed in a transaction, you must set the
nestedTransactionAllowed property on the HibernateTransactionManager bean. Note that
Hibernate does not support the use of savepoints within nested transactions because it is
unable to rollback the session cache’s state.

The transaction boundaries are applied to a bean by wrapping it in a proxy class that
then honors the original bean’s API as declared in its interface(s). Typically, the basis of the
proxy is therefore declared as an abstract bean so that it can be applied to multiple DAO
beans as required. For illustrative purposes, our example application also uses this
approach (see Listing C-15).

Listing C-15. Declaring the Default Transactionality for Our DAO Beans

<bean id="daoTxTemplate" abstract="true"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">

<props>
<prop key="create*">

PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
</prop>
<prop key="get*">

PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
</prop>

</props>
</property>

</bean>

With the transaction manager’s template prepared, the declaration of any DAO objects
must be wrapped in a bean declaration derived from this template.

Our wrapped bean is shown in Listing C-16. The lines highlighted in bold are the wrapped
bean’s declaration—since it is only used as a property for the enclosing proxy, it does not need
to be assigned an id—instead, the id of the paperDao proxy is used when a DAO reference is
required. The proxy will honor the PaperDao interface declared in Listing C-7.

APPENDIX C ■ HIBERNATE AND SPRING 307

6935appC_final.qxd 8/2/06 9:17 PM Page 307

Listing C-16. Wrapping the DAO Implementation Bean with Appropriate Transactionality

<bean id="paperDao" parent="daoTxTemplate">
<property name="target">

<bean class="com.hibernatebook.spring.dao.PaperDaoImpl">
<property name="sessionFactory" ref="sessionFactory"/>

</bean>
</property>

</bean>

Managing the Session
A familiar problem encountered when using Hibernate is the LazyInitializationException.
This occurs when you try to access the lazily loaded attributes of a detached entity—typically
when the session that loaded it has been closed. This causes problems in Spring when you
want to use information obtained from a DAO in a controller in the view to which it forwards
the request.

By default, a DAO derived from the HibernateDaoSupport class closes the session as soon
as any HibernateTemplate methods complete (or as soon as the session is released, if you are
not using HibernateTemplate). Entities that have been retrieved from the DAO will therefore
become detached from their session. If they are then passed to a view—typically a JSP—your
client code will produce a LazyInitializationException when it tries to access any lazy prop-
erties of the entity that were not accessed prior to completion of the original DAO method
(or forced to load in some other way).

Clearly, marking all the properties of your entities as being eagerly loaded is not practi-
cal—and typically, it is not possible to determine in advance exactly which properties of your
entity should be actively loaded.

Instead, Spring provides a mechanism to implement the OpenSessionInView pattern of
behavior. This ensures that the Session object is retained until processing of the view is
complete. Only then is it closed—it must be closed at some point to ensure that your web
applications don’t leak a Session for every user request!

The effect is that with either an OpenSessionInViewInterceptor in your Spring config-
uration file or an OpenSessionInViewFilter configured in your web.xml file, you can access
lazily loaded attributes of entities acquired from your DAOs without any risk of the dreaded
LazyInitializationException. Note that only one of the two options is required—they differ
only in their internal details, not the outcome of applying them.

Generally, we use the OpenSessionInViewInterceptor, as it is configured like any other
Spring bean. Our example application makes use of this to ensure that the lazily loaded
articles attribute of the Paper entity can be accessed from the JSP view implementations
(see Listing C-17).

APPENDIX C ■ HIBERNATE AND SPRING308

6935appC_final.qxd 8/2/06 9:17 PM Page 308

Listing C-17 Declaring the OpenSessionInViewInterceptor for Use in the Spring View

<bean name="openSessionInViewInterceptor"
class="org.springframework.orm.hibernate3.support.OpenSessionInViewInterceptor">

<property name="sessionFactory" ref="sessionFactory"/>
<property name="singleSession" value="true"/>

</bean>

The interceptor needs to control the behavior of the session factory, so we must provide it
with a reference to the appropriate bean. We can also dictate whether a single Session object
will be used for the entire duration of the user request. Setting this to true is the most efficient
approach, and therefore the default; however, it has potential side effects, particularly if
declarative transactions are not in use. When set to false, individual sessions will be acquired
for each DAO operation.

The Sample Configuration File
Listing C-18 shows the full Spring configuration file of our example application as a handy ref-
erence to what’s required in creating a Hibernate-based Spring application.

Listing C-18. The Complete Spring Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<!-- Hibernate configurations -->

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="configurationClass"
value="org.hibernate.cfg.AnnotationConfiguration" />

<property name="configLocation"
value="classpath:hibernate.cfg.xml" />

</bean>

<bean name="openSessionInViewInterceptor"
class="org.springframework.orm.hibernate3.support.OpenSessionInViewInterceptor">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

APPENDIX C ■ HIBERNATE AND SPRING 309

6935appC_final.qxd 8/2/06 9:17 PM Page 309

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="daoTxTemplate"
abstract="true"

class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">

<props>
<prop key="create*">

PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
</prop>
<prop key="get*">

PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
</prop>

</props>
</property>

</bean>

<!-- DAO configurations (note use of template) -->

<bean id="paperDao" parent="daoTxTemplate">
<property name="target">

<bean class="com.hibernatebook.spring.dao.PaperDaoImpl">
<property name="sessionFactory" ref="sessionFactory" />

</bean>
</property>

</bean>

<!-- Basic Spring MVC configurations -->

<bean id="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedViewResolver">

<property name="prefix" value="/WEB-INF/jsp/" />
<property name="suffix" value=".jsp" />
<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView"/>
</bean>

APPENDIX C ■ HIBERNATE AND SPRING310

6935appC_final.qxd 8/2/06 9:17 PM Page 310

<bean id="urlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="interceptors">
<list>

<ref bean="openSessionInViewInterceptor" />
</list>

</property>

<property name="mappings">
<props>

<prop key="/viewPapers.do">viewPapersController</prop>
<prop key="/createPaper.do">createPaperController</prop>
<prop key="/viewArticles.do">viewArticlesController</prop>
<prop key="/createArticle.do">createArticleController</prop>

</props>
</property>

</bean>

<!-- Message resources -->

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">

<property name="basename" value="message"/>
</bean>

<!-- Validators -->

<bean id="createPaperValidator"
class="com.hibernatebook.spring.validator.CreatePaperValidator"/>

<bean id="createArticleValidator"
class="com.hibernatebook.spring.validator.CreateArticleValidator"/>

<!-- Controller configurations -->

<bean id="viewPapersController"
class="com.hibernatebook.spring.controller.ViewPapersController">
<property name="paperDao" ref="paperDao" />

</bean>

APPENDIX C ■ HIBERNATE AND SPRING 311

6935appC_final.qxd 8/2/06 9:17 PM Page 311

<bean id="createPaperController"
class="com.hibernatebook.spring.controller.CreatePaperController">

<property name="commandClass"
value="com.hibernatebook.spring.form.CreatePaper"/>

<property name="commandName" value="paperForm"/>
<property name="formView" value="createPaper"/>
<property name="successView" value="viewPapers"/>
<property name="validator" ref="createPaperValidator"/>
<property name="paperDao" ref="paperDao"/>

</bean>

<bean id="viewArticlesController"
class="com.hibernatebook.spring.controller.ViewArticlesController">

<property name="paperDao" ref="paperDao"/>
</bean>

<bean id="createArticleController"
class="com.hibernatebook.spring.controller.CreateArticleController">

<property name="commandClass"
value="com.hibernatebook.spring.form.CreateArticle"/>

<property name="commandName" value="articleForm"/>
<property name="formView" value="createArticle"/>
<property name="successView" value="viewArticles"/>
<property name="bindOnNewForm" value="true"/>
<property name="validator" ref="createArticleValidator"/>
<property name="paperDao" ref="paperDao"/>

</bean>
</beans>

Summary
The Spring Framework offers excellent support for Hibernate as a persistence mechanism.
It offers excellent support for creating Hibernate-based DAOs and various convenient features
to smooth over the problems that you would otherwise encounter in building web applica-
tions based around Hibernate.

APPENDIX C ■ HIBERNATE AND SPRING312

6935appC_final.qxd 8/2/06 9:17 PM Page 312

Upgrading from Hibernate 2

Hibernate 3 represents a major change from the ways of doing things in Hibernate 2. On the
whole, it is a better product, and we applaud the Hibernate developers for their efforts. One
particular group of users will be made nervous by all the changes: the existing users of Hiber-
nate 2.

Well, there is good news, and there is . . . no bad news! Hibernate 3 has gone the extra mile
to allow earlier users to get along. In this appendix, we will discuss the differences between the
two versions and explain how a Hibernate 2 user can take advantage of them without con-
ducting a major code rewrite.

Hibernate 3 does make changes: the package names have changed, the DTDs have
changed, the required libraries are different, and some of the method names and signatures
have been altered. Even so, we don’t think that these differences will cause you much grief
when upgrading to the new version.

You can run Hibernate 3 on a 1.4 or later JVM quite easily. It is possible in principle to run
Hibernate 3 on a 1.3 JVM, although this will require you to recompile it from the source code
and find older versions of some of the libraries that it depends upon.

Once you have read this appendix, we also recommend that you consult the Hibernate 3
Migration Guide in the Documentation section of the Hibernate web site (http://hibernate.
org). The Hibernate team maintains and updates this section to reflect users’ experiences, so
you can find hints and tips gathered from developers at the cutting edge of just this sort of
upgrade.

Package and DTD Changes
The package names for Hibernate 2 have changed with Hibernate 3. Hibernate 2 used a base
package of net.sf.hibernate, while Hibernate 3 uses a base package of org.hibernate.

This is, in itself, a completely trivial difference—you might imagine that it is purely the
result of a migration from Hibernate’s hosting from SourceForge (http://sf.net or http://
sourceforge.net) to their own web site (http://hibernate.org); but, in fact, there is another
reason for the change.

Because of the package name change, it is possible for an application to use Hibernate 2
and Hibernate 3 simultaneously, allowing legacy Hibernate 2 code to run unmodified within
the same application as more recent Hibernate 3–based components. If the same package
name had been used, then it would be nearly impossible to achieve this.

313

A P P E N D I X D

■ ■ ■

6935appD_final.qxd 8/2/06 9:14 PM Page 313

This is not a coincidence—in addition to the package name, there are now two versions of
the DTDs for the XML configuration files. Unchanged Hibernate 2 code should use the usual
mapping DTD reference of

http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd

And for your new Hibernate 3 code, you will use

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

Similarly, for the Hibernate configuration file, your version 2 code will use

http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd

And your version 3 code will use

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd

■Caution If you do not update your mapping configuration from the Hibernate 2 form to the Hibernate 3
form, the time it takes to create a configuration and session factory will increase from around 20 seconds to
a matter of minutes.

Obviously, it will not be possible for you to have two configuration files with the same
(default) name of hibernate.cfg.xml, but either version of Hibernate permits you to con-
struct a Configuration object and then specify an explicit location for the configuration file
using the configure() methods (as shown in Listing D-1). If you are using both versions of
Hibernate simultaneously, you must make sure that POJOs are not passed from one ver-
sion’s Session object to another’s. If you need to persist your old POJOs using the new
version, you must update the older code to use Hibernate 3. For an explanation of how this
sort of upgrade is supported by Hibernate 3, see the description of the “classic” API in the
following section, “New Features and Support for Old Ones.”

Listing D-1. Using an Explicitly Named Configuration File in Hibernate 3

File configFile = new File("hibernate3.cfg.xml");
Configuration v3Config = new Configuration();
v3Config.configure(configFile);
SessionFactory sessionFactory =

v3Config.buildSessionFactory();

Session session = sessionFactory.openSession();
// ...

You should be aware that in your Hibernate 3 logic, some of the defaults for entries in the
mapping file have changed. If you have logic that relies upon implicit settings, you should
review your converted mapping files against the version 3 DTD to check that they will behave
as expected. The most significant change is that all mappings now default to lazy loading.

APPENDIX D ■ UPGRADING FROM HIBERNATE 2314

6935appD_final.qxd 8/2/06 9:14 PM Page 314

New Features and Support for Old Ones
If you are a Hibernate 2 developer and you have browsed through the earlier chapters, you will
have realized that Hibernate 3 offers a lot of new features. You will have also realized that some
of the Hibernate 2 features that you rely on may no longer be supported in version 3. For the
most part, though, this is not the case.

Changes and Deprecated Features
If you do not plan to take advantage of the Hibernate 3 features in any of your existing code,
you can, as discussed, simply run the two versions side by side without concern. If you are
prepared to make some changes to your existing code, then it is better to take the opportunity
to update your existing code to use Hibernate 3 directly. In order to make this second choice a
little easier, Hibernate 3 provides a number of “deprecated” APIs that permit fewer changes
than a full-blown conversion.

This reduces the immediate impact of the change, and allows you to conduct the rest of
the conversion at your leisure, while still allowing you to remove the legacy Hibernate 2
libraries from your application.

■Tip Hibernate exceptions are now thrown as unchecked exceptions. This will not impact existing code,
but you may want to revisit APIs that explicitly declare HibernateExceptions. This change is intended to
increase the clarity of API signatures by removing the need for the explicit throws clause in code, which
uses Hibernate but does not catch its exceptions. There are ongoing debates over the relative merits of the
two approaches, but certainly the change from checked to unchecked does not introduce any incompatibili-
ties (whereas the reverse would).

Some changes to HQL have occurred between versions 2 and 3. If you have a substantial
body of existing HQL syntax, you can elect to retain the old syntax. The selection is made with
the hibernate.query.factoryclass configuration attribute, which selects the class to load for
translating HQL into database queries. The options are listed in Table D-1.

Table D-1. The HQL Processing Classes

Query Factory Class HQL Version

org.hibernate.hql.ast.ASTQueryTranslatorFactory 3 (default)

org.hibernate.hql.classic.ClassicQueryTranslatorFactory 2

It is not possible to switch between the two query translators within a SessionFactory
instance. Because HQL queries are not parsed until run time1, you will need to run extensive tests
to ensure that your modified queries are correct if you decide to convert to the Hibernate 3 syntax.

APPENDIX D ■ UPGRADING FROM HIBERNATE 2 315

1. Named queries were introduced in Hibernate 3. These are stored in the mapping file or the annota-
tions, and are parsed on application initialization—so while they are still parsed at run time, you will
not need to run extensive tests to spot syntactical problems with them.

6935appD_final.qxd 8/2/06 9:14 PM Page 315

The object retrieved from the session factory in Hibernate 3 implements both the pure
Hibernate 3 org.hibernate.Session interface and a Hibernate 2–friendly org.hibernate.
classic.Session interface. By using a classic Session reference instead of the usual one, you
will have access to the methods that have now been deprecated. Despite their deprecated sta-
tus, all of these methods are fully implemented at the present time. Most of them are back-
ward-compatible with their Hibernate 2 counterparts—but the delete(String) method has
changed slightly in that deletions are no longer cascaded to associated entities.

A fully converted Hibernate 3 application will not need to invoke any of these methods,
so you should use a reference to the standard interface unless you’re absolutely compelled
by existing logic.

Other deprecated features reside in the classic package and its subpackages. Notable
examples are listed in Table D-2.

Table D-2. Feature Replacements in Hibernate 3

Feature Location in Hibernate 3 Use in Preference

Life cycle org.hibernate.classic Interceptor or event

Validatable org.hibernate.classic Interceptor or event

Some of the changes to Hibernate 3 have not justified the creation of a replacement class.
A few methods will have been removed, replaced, or renamed. In these few cases, if you do not
want to run Hibernate 2 and 3 side by side, you will be forced to update your code. When com-
pilation produces errors, consult the javadoc API at http://hibernate.org to see whether the
API has changed, and to determine how to alter your code to work in the new environment. In
practice, there are few changes in the core API between versions 2 and 3, and the changes that
do exist have well-signposted successors in the new API documents.

Additions
The Event class is new to Hibernate 3. If you are familiar with the Interceptor class (which is
retained), you will have some idea of what to expect. This topic is discussed in Appendix A.

The Criteria and Filter APIs have been extended considerably. These are discussed in
detail in Chapter 11.

The flexibility of the mappings has been improved. For example, the join element per-
mits a single class to be represented by multiple tables. Support for stored procedures allows
better integration with legacy databases. The mapping file format is discussed in Chapter 8,
and support for stored procedures and other new features is discussed in Appendix A.

Changes to Tools and Libraries
As you may expect, the libraries upon which Hibernate is based have changed in version 3.
Some have been added and others have been brought up to date. Rather than enumerate
these here, we refer you to the lib/README.txt file in your Hibernate 3 distribution, which
explains in detail whether or not individual libraries are required, and what purpose each
serves.

APPENDIX D ■ UPGRADING FROM HIBERNATE 2316

6935appD_final.qxd 8/2/06 9:14 PM Page 316

Hibernate 2 provided a number of aids to the generation of POJOs, mapping files, and
database schemas. Hibernate 3 has started a process of migrating to external support for these
processes. Where these tools are retained, they can be found in the org.hibernate.tool pack-
age and its subpackages. For example, previously a facility provided by the CodeGenerator class
to generate DDL from your mappings existed in Hibernate 2. This is still provided in Hibernate
3, but the fully qualified name of the SchemaExport class is now org.hibernate.tool.hbm2ddl.
SchemaExport—but even though the tool still exists, the generation of mapping files from
POJOs in Hibernate 3 would usually be conducted by an Eclipse plug-in, or the Hibernate
Tools Ant tasks. See Appendix B for an extensive discussion of the use of the Eclipse plug-ins
and Ant tasks.

Changes with Java 5
The latest release of Java introduced some pretty substantial changes to the language. It also
introduced some incompatibilities with the previous class file format.

The only significant addition to Hibernate 3 that relies directly upon a Java 5–specific
feature is the annotations support. Otherwise, a 1.4 JVM will work fine. In fact, it is even possible
to build Hibernate 3 for a 1.3 JVM, although a suitable binary version is no longer distributed.
The use of annotation-based mapping in Hibernate 3 is discussed in depth in Chapter 6.

Summary
In this appendix, we examined some of the changes that have been introduced with Hibernate
3, and showed how code written for Hibernate 2 can be run in parallel with Hibernate 3, or be
readily adapted to run directly under Hibernate 3.

APPENDIX D ■ UPGRADING FROM HIBERNATE 2 317

6935appD_final.qxd 8/2/06 9:14 PM Page 317

6935appD_final.qxd 8/2/06 9:14 PM Page 318

■Symbols
@AttributeOverride annotation, 123
@Basic annotation

compared to @Column annotation, 112
embeddable entity, 114
mapping large objects, 123
persisting basic types with, 111–112

@Column annotation
embeddable entities, 114
mapping properties and fields, 112–113

@DiscriminatorColumn annotation
attributes, 120

@Embeddable annotation
as marker annotation, 114

@Embeddable class, 105, 107–108, 110
@Embedded annotation

marking and embedded property, 114
@EmbeddedId annotation

compounding primary keys, 105, 107–108, 110
@Entity annotation

adding to class, 101
attributes, 128

@Enumerated annotation
embeddable entities, 114

@GeneratedValue annotation, 102
generator attribute, 104
primary keys, 101–103
sequenceName attribute, 104

@GenericGenerator annotation
key generation strategies, 130–131

@Id annotation
compounding primary keys, 105, 107–108, 110
primary keys, 101–103

@IdClass annotation
compounding primary keys, 105, 107–108, 110

@Index annotation, 130
@IndexColumn annotation

collection ordering, 117
ordering collections, 129

@Inheritance annotation
compared to @Inheritance, 123
strategy attribute, 120

@javax.persistence.Column annotation, 127
@javax.persistence.Id annotation, 127
@JoinTable annotation, 118
@Lob annotation

embeddable entities, 114
mapping large objects, 123

@ManyToOne annotation, 118
@MappedSuperclass annotation, 123
@NamedNativeQueries annotation, 125
@NamedNativeQuery annotation, 125

@NamedQuery annotation, 124
@OneToMany annotation, 116
@OneToOne annotation, 115
@OrderBy annotation, 117
@Parameter annotation, 130
@SecondaryTable annotation

database table mapping, 110–111
join attribute, 110

@SequenceGenerator annotation
generating primary key values, 103

@Sort annotation, 129
@Table annotation, 130

database table mapping, 110–111
@TableGenerator annotation

generating primary key values, 104–105
@Temporal annotation

embeddable entities, 114
value attribute, 122

@Transient annotation
persistence, 112

@Where annotation, 130

■A
abstract attribute

<class> element, 143
access attribute

collection elements, 155
<component> element, 150
<id> element, 146
<many-to-one> element, 153
<one-to-one> element, 151
<property> element, 149

AccessGroups class
com.hibernatebook package, 22

AccessType annotation, 127
ACID tests, 183
<activatedFilter> element, 228
<activatedParam> element, 227
add() method

Criteria interface, 214
ProjectionList class, 220

addCacheableFile() method
Configuration class, 21

addClass() method
Configuration class, 20

addDirectory() method
Configuration class, 20

addDocument() method
Configuration class, 21

addEntity() method
SQLQuery interface, 210

addJar() method
Configuration class, 20

Index

319

6935idx_final.qxd 8/2/06 9:55 PM Page 319

addJoin() method
SQLQuery interface, 210

addOrder() method
Criteria interface, 218–219

addScalar() method
SQLQuery interface, 210

addURL() method
Configuration class, 20

addXML() method
Configuration class, 20

AdException class, 52
Advert class

creating, 41
mapping to database, 44–45

AdvertDAO class, 55–56
afterTransactionBegin interceptor method, 256,

261
afterTransactionCompletion interceptor method,

256, 261
aggregate functions

Projections class, 220
aggregation

mapping to composition relationship, 167–169
methods, 206–207

aliases, 201
ALL value

CascadeType enumeration, 116
allocationSize attribute

@TableGenerator annotation, 104
AND restriction, 215

with more than two different criteria, 216
annotated classes, configuring, 125–126
AnnotationConfiguration class, 301

configuring the SessionFactory, 96
org.hibernate.cfg package, 125–126
programmatically configuring Hibernate

application, 236
<annotationconfiguration> task element, 287
annotations

and Hibernate 3, 14
annotating class as EJB3 Entity Bean, 101
Hibernate-specific annotations, 126
pros and cons, 94–95
recommendations for using, 95
using in your application, 96

Annotations feature
Hibernate 3, 11

Annotations library, 317
annotations toolset, installing, 96
<annotationsconfiguration> configuration

element, 290
Ant mappings with annotations, 131–132
Ant build tool, 27–28
Ant tasks, 317

configuring classpath, 296–297
defining, 32
JAR files, 284–285
reverse engineering, 291–294
tasks contained in example Ant script, 32
templates, 294–296
workings of, 285–291

<any> element, 177
<array> element, 177
ArtifactCollector class

org.hibernate.tool.hbm2x package, 296
artifacts scripting variable

Template task, 296
as keyword, 201
asc() method

Order class, 218
associations, 84, 205–206

and entities, 65–69
applying mapping, 89
entity relationships, 85
many-to-many association, 88–89
marking owner of association, 69
one-to-many association, 87–88
one-to-one association, 85–87
with Criteria API, 218

ASQueryTranslatorFactory class
org.hibernate.hql.ast package, 315

atomicity (transactions), 183
AUTO value

GeneratorType enumeration, 103
auto-flush listener

AutoFlushEventListene interface, 252
auto-import attribute

hibernate-mapping element, 142
autoboxing, Java 5 features, 93
AutoFlushEventListene interface, 252–253
avg() aggregate function

Projection class, 220
avg() function, 207

■B
backwards compatibility

Hibernate 2 session factory, 23
<bag> element

introduction, 161–162
base attribute

@IndexColumn annotation, 129
batch-size attribute

<class> element, 143
collection elements, 155

BatchSize annotation, 127
Bean-Managed Persistence, 4
beforeTransactionCompletion interceptor

method, 256
beginTransaction() method

Session interface, 181
bidirectional association

common misconception about, 66
bidirectional associations, 65
BMP (Bean-Managed Persistence), 4
Booking POJO example, 257–263
buildSessionFactory() method

Configuration class, 15
bulk updates with HQL, 207–208
bulkUpdate() method

HibernateTemplate class, 305

■INDEX320

6935idx_final.qxd 8/2/06 9:55 PM Page 320

■C
c2h scripting variable

Template task, 296
c2j scripting variable

Template task, 296
Cache annotation, 127
CacheMode class

options, 191–192
CacheProvider interface

org.hibernate.cache package, 190
caching

CacheMode options, 191–192
introduction, 190
level 2 cache implementations supported by

Hibernate, 191
sessions relationship to caches, 190

Calendar class
java.util package, 122

cancelQuery() method
Session interface, 181

cardinality, 143
Cascade annotation, 127
cascade attribute

@ManyToMany annotation, 119
@ManyToOne annotation, 118
@OneToMany annotation, 117
@OneToOne annotation, 115
collection elements, 74, 156
<many-to-one> element, 153
<one-to-one> element, 151

CascadeType enumeration, 116
cascading operations, 74

different types, 75–76
one-to-one association, 116
represented in mappings, 91

cases, 202
catalog attribute

@JoinTable annotation, 118
@TableGenerator annotation, 104
<class> element, 143
collection elements, 156
<hibernate-mapping> element, 142

Category class
creating, 40
mapping to database, 43

CategoryDAO class, 57
building, 54

cfg scripting variable
Template task, 296

Cfg2HbmTool class
org.hibernate.tool.hbm2x package, 296

Cfg2JavaTool class
org.hibernate.tool.hbm2x package, 296

Check annotation, 127
check attribute

<class> element, 144
collection elements, 156
<one-to-one> element, 151

class attribute
<component> element, 150
<generator> element, 147

<many-to-one> element, 151, 153
<mapping> element, 21, 272

<class> element, 139, 143, 163
and DTDs, 143
attributes, 143–145
classes need <id> or <composite-id> element,

146
node attribute, 242
optimistic-lock attribute, 237
order and cardinality of child elements, 146

classes
and entities, 64–65
mapping to table, 163

ClassicQueryTranslatorFactory class
org.hibernate.hql.classic package, 315

classpath attribute, 285
<classpath> element, 286

configuring Hibernate Console, 273
configuring classpaths, 296–297

clear() method
Session interface, 181, 190

close() method
Session interface, 23, 181

CMP (Container-Managed Persistence)
as persistence solution for entity beans, 4
description, 67

Collection class, 157
collection elements, 155

common attributes, 155
collection expressions, 202
collection wrappers, 76–77
collection-type attribute

collection elements, 156
CollectionOfElements annotation, 127
column attribute

<id> element, 146
<many-to-one> element, 153
<property> element, 149

<column> element, 150
column types and sizes

represented in mappings, 90
columnDefinition attribute

@Column annotation, 113
@DiscriminatorColumn annotation, 121
@IndexColumn annotation, 129

Columns annotation, 127
com.hibernatebook package

AccessGroups class, 22
Comparator class, 157
comparison operators, 202
compile task, 32
<component> element, 150–151, 166

attributes, 150
child elements, 151

components, introduction, 140
<composite-id> element, 148
CompositeUserType interface

org.hibernate.foo package, 141
concatenation operators, 202
condition attribute

<filter> element, 226

■INDEX 321

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 321

configuration files
generating with Hibernate Console, 280–281

Configuration class
buildSessionFactory() method, 15
configure() method, 15, 20
creating, 12
creating from HibernateServiceMBean, 14
extending with Ant tasks, 286
looking for mapping file, 34
mapping documents to, 20
Persistence class corresponds to, 235
programmatically configuring Hibernate

application, 36
represents configuration details, 13
SessionFactory created from, 48
setNamingStrategy() method, 22
specifying explicit location for configuration

file, 314
configuration file, creating for simple application,

33–35
<configuration> task element, 286
configurationfile attribute

<configuration> task element, 286
configure() method

Configuration class, 15, 20
configuring Hibernate, 14–16

properties, 16–19
conjunction() method

Restrictions class, 216
Connection object

closing, 28
pool property, 33
session compared to, 48

connection() method
Session interface, 181

ConnectionPool class
compared to SessionFactory class, 179

consistency (transactions), 183
console attribute

<hbm2ddl> element, 288
constrained attribute

<one-to-one> element, 151
constraints, represented in mappings, 91
constructors, overriding default constructor, 263
Container-Managed Persistence. See CMP
contains() method

HibernateTemplate class, 305
Session interface, 181

count() aggregate function
Projection class, 220

count() function, 207
countDistinct() aggregate function

Projection class, 220
CreatCategory class, 57
create attribute

<hbm2ddl> element, 288
Create Hibernate Console Configuration dialog,

272
create listener

CreateEventListener interface, 252
create() method

Example class, 222

createArticle() method
HibernateCallback class, 305

createCategories task, 32
running, 56

createCriteria() method
Criteria interface, 218
Session interface, 181, 213

createEntityManagerFactory() method
Persistence class, 234

CreateEventListener interface
create listener, 252

createFilter() method
Session interface, 180

createQuery() method
Session interface, 181, 196

CreateUser class, 56–57
createUsers task, 32, 56, 57
Criteria API

advanced queries, 213
associations, 218–219
distinct results, 219
introduction, 213
obtaining a unique result, 217
paging through result set, 217
Product class, 213
projections and aggregates, 219–221
Software class, 213
sorting query’s results, 218
using restrictions, 214–217

Criteria interface, 213
add() method, 214
addOrder() method, 218–219
createCriteria() method, 218
org.hibernate package, 196
setFirstResult() method, 204, 217
setMaxResults() method, 204, 217
setProjection() method, 220
uniqueResult() method, 217

Criterion interface
implemented by Example class, 221
org.hibernate.criterion package, 214

cross join, 206

■D
DAOs (Data Access Objects)

AdException class, 52
AdvertDAO class, 55–56
building, 52
CategoryDAO class, 54
creating base class DAO, 48, 50
UserDAO class, 52

database design
JDBC connection, 245
omitting of primary key, 245
putting SQL into mapping, 248–250
using views for mapping, 247–248

databases
entity relationships, 45
generation, 8
standardization problems for applications, 1
table mapping, 110–111
using your own for examples, 28

■INDEX322

6935idx_final.qxd 8/2/06 9:55 PM Page 322

DataDirectOracle9Dialect class, 25
DataSource bean, 302
dataSource property

LocalSessionFactoryBean class, 302
Date and Time SQL-92 functional operators

using in where clause, 202
Date class

java.sql package, 122
java.util package, 122

DB2390Dialect class, 24
DB2400Dialect class, 24
DB2Dialect class, 24
deadlocks

generating a deadlock, 187–190
introduction, 186

deadly embrace. See deadlocks
declarative transaction management, 306–307
default constructor, overriding, 263
default-access attribute

<hibernate-mapping> element, 142
default-cascade attribute

<hibernate-mapping> element, 142
default-lazy attribute

<hibernate-mapping> element, 142
DefaultNamingStrategy class

org.hibernate.cfg package, 22
delete from clause, 208
DELETE HQL statement, 74
delete listener

DeleteEventListener interface, 252
DELETE statements, 194
delete() method

HibernateTemplate class, 305
Session interface, 74, 180

delete-orphan cascade type, 76
DeleteEventListener interface

delete listener, 252
deletes with HQL, 207–208
delimiter attribute

<hbm2ddl> element, 288
DerbyDialect class, 24
desc() method

Order class, 218
destdir attribute

<hbm2cfgxml> element, 289
<hbm2dao> element, 290
<hbm2ddl> element, 288
<hbm2doc> element, 290
<hbm2hbmxml> element, 290
<hbm2java> element, 289
<hbmtemplate> element, 295–296

<destDir> element, 286
destdir property

<query> element, 291
destfile property

<query> element, 291
detached objects, 64
dialect property

XML configuration, 19
dialects, use of, 13
direct mapping example, 245–247

dirty read, 183
DirtyCheckEventListener interface

dirty-check listener, 252
disableFilter() method

Session interface, 181, 227
disconnect() method

Session interface, 181
discriminator-value attribute

<class> element, 144
DiscriminatorFormula annotation, 127
discriminatorType attribute

@DiscriminatorColumn annotation, 121
DiscriminatorType enumeration

javax.persistence package, 121
Disjunction class

org.hibernate.criterion package, 216
disjunction() method

Restrictions class, 216
DISTINCT query, 219
DistinctRootEntityResultTransformer class

org.hibernate.transform package, 219
Dom4J, required as API for XML access, 238
DriverManagerDataSource bean, 302
drop attribute

<hbm2ddl> element, 288
DTD (document type definition)

changes from Hibernate 2 to 3, 314
Hibernate configuration files, 7
order and cardinality, 143

durability (transactions), 183
<dynamic-component> element, 177
dynamic-insert attribute

<class> element, 144
dynamic-map entity mode

SessionFactory class, 139
dynamic-update attribute

<class> element, 144
dynamicInsert attribute

@Entity annotation, 128
dynamicUpdate attribute

@Entity annotation, 128

■E
Eclipse plug-ins, 265–266, 317

boilerplate project configuration, 268–271
Hibernate Console, 271

browsing model, 276
configuring, 271–274
Entity Model view, 279
generating configuration files, 280–281
generating mapping files, 280
generating schema, 274–275
Query Parameters view, 278–279
reverse engineering and code generation

tools, 282–284
running test program, 275–276
testing HQL queries, 277–278

installing, 266–268
EJB 3

and EntityManager component, 233–236
as persistence solution, 4

■INDEX 323

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 323

deploying Hibernate 3, 14
persistence annotations, 96, 97, 100
relationship with Hibernate 3, 8
standard of J2EE, 1

EJB QL
correlation with HQL, 8
mapping named queries, 124–125

EJB Query Language. See EJB QL
ejb3 attribute

<hbm2cfgxml> element, 289
<hbm2java> element, 289

Ejb3Configuration class, 236
<ejb3configuration> task element, 287
embed-xml attribute

<collection> elements, 156
<many-to-one> element, 153
mapping files, 238, 241
<one-to-one> element, 151

embedding HQL statements, 196
enableFilter() method

Session interface, 181, 227
Enterprise JavaBeans. See EJBs
entities

and associations, 65–69
deleting, 74
introduction, 64–65, 139
loading, 71–72
refreshing, 72
relationships, 85
retrieving names from Hibernate, 72
saving, 69–70
updating, 73

Entity annotation, 127
javax.persistence package, 127

entity attribute
<one-to-one> element, 151

entity-name attribute
<class> element, 144
<many-to-one> element, 153

EntityManager class
methods correspond with values of

CascadeType, 116
persist() method, 235

EntityManager component
accessing ORM components, 233–235
deploying into an EJB 3 application server, 236
EJB 3 and, 233
Hibernate can be used as implementation of, 8

EntityManager interface, 96
EntityManagerFactory class, 234
entityresolver attribute

<configuration> task element, 286
<ejb3configuration> task element, 287

enumerations, Java 5 features, 93
eq() method

Restrictions class, 214
equality operators, 202
equals() method

implementing on Java persistence objects, 70
error handling, JDBC approach, 7
Event class, new to Hibernate 3, 316
event listener example, 254

events, introduction, 252–253
evict listener

EvictEventListener interface, 252
evict() method

Session interface, 181, 190
EvictEventListener interface

evict listener, 252
Example class

create() method, 222
org.hibernate.criterion package, 221
QBE functionality, 221

EXCEPTION value
NotFoundAction enumeration, 128

executeUpdate() method
Query interface, 207–208

export attribute
<hbm2ddl> element, 288

exportDDL task, 32
creating database entity relationships, 45–46
creating schema in HSQLDB database files, 37

<exporter> elements, 287
Exporter interface

org.hibernate.tool.hbm2x package, 295
exporterclass attribute

<hbmtemplate> element, 295
expressions, 202

■F
fetch attribute

@ManyToMany annotation, 119
@ManyToOne annotation, 118
@OneToMany annotation, 117
@OneToOne annotation, 115
<many-to-one> element, 153, 156
<one-to-one> element, 151

FetchType enumeration
javax.persistence package, 117

field persistence
@Basic and @Transient annotations, 112

file attribute
<mapping> element, 21

filepattern attribute
<hbmtemplate> element, 295

Filter annotation, 127
<filter> element, 226
Filter interface, 227
<filter-def> element

defining filters, 226
<filter-param> element

defining filters, 226
FilterDef annotation, 127
FilterDefs annotation, 127
filters, 225

basic example, 227–232
defining, 226
using in applications, 227
where to use, 225

Filters annotation, 127
find() method

HibernateTemplate class, 305
findDirty interceptor method, 256

■INDEX324

6935idx_final.qxd 8/2/06 9:55 PM Page 324

FirebirdDialect class, 24
flush listener

FlushEventListener interface, 253
flush() method

Session interface, 73, 181–182
FluhEntityEventListener interface

flush-entity listener, 253
FlushEventListener interface

flush listener, 253
for loops, Java 5 features, 93
foreign key constraints, 47

relationships mandated by, 80
foreign key relationships

representing associations, 65, 68
foreign-key attribute

<many-to-one> element, 153
<one-to-one> element, 151

format attribute
<hbm2ddl> element, 288

Formula annotation, 127
formula attribute

<many-to-one> element, 153
<one-to-one> element, 151
<property> element, 149

from clause, 196, 201
FrontBaseDialect class, 24
full outer join, 206

■G
ge() method

Restrictions class, 215
generator attribute

@GeneratedValue annotation, 102, 104
<generator> element, 147, 163

class attribute, 147
GeneratorType enumeration

javax.persistence package, 102
primary key generators, 102

GenericDialect, limitations in using, 33
GenericGenerator annotation, 127
generics, Java 5 features, 93
get() method

HibernateTemplate class, 305
Session interface, 48, 180, 250

getCacheMode() method
Session interface, 181

getCurrentLockMode() method
Session interface, 181

getEnabledFilter() method
Session interface, 181, 227

getEntity interceptor method, 256
getEntityName interceptor method, 256
getEntityName() method

Session interface, 72, 180
getFilterDefinition() method

Filter interface, 227
getFlushMode() method

Session interface, 73
getIdentifier() method

Session interface, 146, 180
getName() method

Filter interface, 227

getNamedQuery() method
Session interface, 181

getSession() method
Session interface, 240

getTransaction() method
Session interface, 181

global intercepter, installing, 258–259
GROUP BY clause, 219
groupProperty() method

Projections class, 221
gt() method

Restrictions class, 215

■H
haltonerror attribute

<hbm2ddl> element, 288
Harrop, Rob and Machacek, Jan

Pro Spring, 299
<hbm2cfgxml> element, 289
<hbm2dao> element

destdir attribute, 290
<hbm2ddl> element, 288
<hbm2doc> element

destdir attribute, 290
<hbm2hbmxml> element, 290
<hbm2java> element, 290

attributes, 289
<hbmtemplate> element

attributes, 295
destdir attribute, 296

Hello World example, 6–7
Hibernate

and Spring, 299
as persistence solution, 5
as thin solution, 6
configuring, 14–16

from Spring application, 300–303
properties, 16–19

database generation, 8
deploying, 13

annotations and EJB 3, 14
JMX, 14
libraries for running Hibernate 3, 13

direct mapping, 245–247
downloading latest version, 27
filters, 225
fitting into existing Java application, 12
Hello World example, 6–7
integrating and configuring, 11–12
introduction, 1
invoking stored procedures, 251–252
level 2 cache implementations supported, 191
limitations of, 245
mapping, 7, 20–21
naming strategy, 21–22
origins, 3–4
persisting POJOs in database, 2–3
putting SQL into mapping, 248–250
relation bteween tables and classes, 245
session factory, 23–24
SQL dialects, 24–25

■INDEX 325

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 325

upgrading from version 2, 313
additions in version 3, 316
changes and deprecated features, 315–316
changes to tools and libraries, 316
changes with Java 5, 317
package and DTD changes, 313–314

using container-managed data source, 22
using in Spring beans, 303–306
using views for mapping, 247–248
XML configuration, 19–20

Hibernate 2
building simple application, 27
session factory backwards compatibility, 23

Hibernate 3
libraries, 13
relationship with EJB 3, 8
standard value names, 140

Hibernate 3 annotations toolset, 96
Hibernate Annotations JAR libraries, 299

creating, 269
Hibernate applications

converting to portable EJB 3 application, 233
Hibernate class

initialize() method, 77
isInitialized() method, 77
isPropertyInitialized() method, 77
org.hibernate package, 210

Hibernate Code Generation tool, 282–284
Hibernate Console, 271

browsing model, 276
configuring, 271–274
Entity Model view, 279
generating configuration files, 280–281
generating mapping files, 280
generating schema, 274–275
Query Parameters, 278–279
reverse engineering and code generation tools,

282–284
running test program, 275–276
testing HQL queries, 277–278

Hibernate Console Configuration menu option
accessing Wizard, 272

Hibernate Dynamic SQL Preview window
testing HQL queries, 277

Hibernate Entity Model view, 279
Hibernate JAR libraries, 299
Hibernate Query Language. See HQL
Hibernate Tools

Ant tasks, 265, 284–285
configuring classpath, 296–297
reverse engineering, 291–294
templates, 294–296
workings of, 285–291

directories, 31
downloading, 27
Eclipse plug-ins, 265–266

boilerplate project configuration, 268–271
Hibernate Console, 271–284
installing, 266–268

required for simple application, 27
Hibernate Tools Task

daughter elements, 286

Hibernate user library, creating, 269
<hibernate-mapping> element, 141, 163

attributes, 141
order and cardinality of child elements, 142

Hibernate-specific annotations
@Entity, 128
@Index, 130
@IndexColumn, 129
@Sort, 129
@Table, 130
@Where, 130
alternative key generation strategies with

@GenericGenerator, 130–131
listing, 127

hibernate.cfg.xml file, 14, 19
declarative mapping, 125
<mapping> element, 21

hibernate.connection.datasource property, 22
hibernate.connection.password property, 22
hibernate.connection.username property, 22
hibernate.dialect property, 25
hibernate.jndi.class property, 22
hibernate.jndi.url property, 22
hibernate.properties file, 14

Session objects, 16
WebLogic 7.0 managed data source, 22

hibernate.show_sql property
viewing SQL in HQL queries, 200

HibernateCallback class
createArticle() method, 305

HibernateDaoSupport class, 303, 308
extending, 304
methods, 304

HibernateException class, 217
HibernateServiceMBean interface

org.hibernate.jmx package, 14
HibernateTemplate class, 304–306, 308
HibernateTransactionManager bean, 307

nestedTransactionAllowed property, 307
HQL (Hibernate Query Language), 193

aggregate methods, 206–207
associations, 205–206
bulk updates and deletes, 207–208
commenting generated SQL, 200–201
correlation EJB QL, 8
Entity Model view, 279
first example, 196, 199, 201
from clause and aliases, 201
introduction, 193
logging underlying SQL, 200
mapping named queries, 124–125
named parameters, 202–203
named queries, 208–209
obtaining a unique result, 205
paging through result set, 204
Query Parameters, 278–279
restrictions, 203
select clause and projection, 201
sorting results with order by clause, 205
syntax basics, 194

DELETE statements, 194
INSERT statements, 195

■INDEX326

6935idx_final.qxd 8/2/06 9:55 PM Page 326

SELECT statements, 195
UPDATE statements, 194

testing queries, 277–278
HQL Scratchpad

testing HQL queries, 277
HSQLDB database

exportDDL task creating schema, 37
required for simple application, 27
version 1.8.0.2 used for examples, 28

HSQLDB driver JAR libraries, 300
HSQLDialect class, 24

■I
<id> element, 146, 163

attributes, 146
child elements, 148
<generator> element needs to be specified, 147

id field
User class, 42

<idbag> collection element
introduction, 159–160

IdentifierGenerator interface
default implementations, 147

identifiers, 65
IDENTITY value

GeneratorType enumeration, 103
IGNORE value

NotFoundAction enumeration, 128
ilike() method

Restrictions class, 215
ImprovedNamingStrategy class

code for using, 22
org.hibernate.cfg package, 22

Index annotation, 127
index attribute

<many-to-one> element, 153
<property> element, 149

IndexColumn annotation, 127
InformixDialect class, 24
IngresDialect class, 24
inheritance

mapping hierarchies into database, 120–122
mapping relationships, 172–176
mapping relationships to database, 90

InitialContextFactory interface, 22
initialize() method

Hibernate class, 77
InitalizeCollectionEventListener interface

load-collection listener, 253
initialValue attribute

@TableGenerator annotation, 104
inner join, 206
insert attribute

<component> element, 150
<many-to-one> element, 154
<property> element, 149

INSERT statements, 195
insertable attribute

@Column annotation, 113
instantiate interceptor method, 256
InterbaseDialect class, 24

Interceptor interface
interceptors have to override, 258

interceptors, 255
Booking POJO example, 257–263
changing data from within, 262
implementation, 259–261
methods, 256

inverse, 66
making an association the owner, 69

inverse attribute
<bag> element, 161
<list> collection element, 158
<map> collection element, 160
<set> collection element, 157

inverseJoinColumns attribute
@JoinTable annotation, 118

isConnected() method
Session interface, 181

isDirty() method
Session interface, 73, 181

isInitialized() method
Hibernate class, 77

isNotNull() method
Restrictions class, 215

isNull() method
Restrictions class, 215

isolation (transactions), 183
isOpen() method

Session interface, 181
isPropertyInitialized() method

Hibernate class, 77
isTransient interceptor method, 256
isUnsaved interceptor method, 257

■J
J2EE and standardization of database applications,

1
J2EE application server

Hibernate persistence has no requirement for, 5
J2EE Connector Architecture. See JCA
J2SE, Hibernate 3 requires, 11
jar attribute

<mapping> element, 21
Java 2 Enterprise Edition. See J2EE
Java 5

changes with, 317
enhancing DAOs with features from, 60
features, 93

Java applications
understanding where Hibernate fits in, 12

Java Database Connectivity. See JDBC
Java Development Tools (JDT)

evolvement of Eclipse, 265
Java Management Extensions. See JMX
Java Native Directory Interface. See JNDI
Java Runtime Environment, 96
Java Standard Template Library JARs, 300
java.sql package

Date class, 122
Time class, 122
Timestamp class, 122

■INDEX 327

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 327

java.util package
Calendar class, 122
Date class, 122
Set class, 43

javax.persistence package, 95
DiscriminatorType enumeration, 121
Entity annotation, 127
FetchType enumeration, 117
GeneratorType enumeration, 102
InheritanceType enumeration, 120
PrimaryKeyJoinColumn class, 110
TemporalType enumeration, 122

<jb3configuration> element, 236
JCA (J2EE Connector Architecture), 12
JDataStoreDialect class, 24
JDBC (Java Database Connectivity), 12

API, 1
approach to retrieving POJO, 3
complicated error handling, 7
connection, 245
getting Hibernate to work with older JDBC

versions, 13
Hibernate uses to access relational database, 12
isolation levels, 183
query parameters, using in where clause, 202

<jdbcconfiguration> task element, 289, 291
attributes, 287
revengfile attribute, 292
reversestrategy attribute, 292

jdk5 attribute
<hbm2java> element, 289

JDT (Java Development Tools)
evolvement of Eclipse, 265

JMX (Java Management Extensions)
deploying Hibernate, 14
Hibernate supports, 12

JNDI (Java Native Directory Interface)
Hibernate supports, 12
obtaining Hibernate session factory in

application, 12
SessionFactory class, 7

JndiObjectFactoryBean bean
using, 302

join attribute
@SecondaryTable annotation, 110

join clause
adding associations, 205

joinColumns attribute
@JoinTable annotation, 118

JOINED
inheritance approach to mapping hierarchies

into database, 120
JRE (Java Runtime Environment), 96
JtaTransactionManager class, 307

■L
large objects, mapping, 123
lazy attribute

<class> element, 144
collection elements, 156
<component> element, 150

<many-to-one> element, 154
<one-to-one> element, 152
<property> element, 149

lazy loading, 76–77, 83–84, 112
changes from Hibernate 2 to 3, 314

LazyInitializationException class, 77, 308
le() method

Restrictions class, 215
left outer join, 206
length attribute

@Column annotation, 112
@DiscriminatorColumn annotation, 121
<id> element, 146
<property> element, 149

libraries for Hibernate 3, 13
Lifecycle interface

supported prior to Hibernate 3, 64
like() method

Restrictions class, 215
<list> collection element

introduction, 158–159
ListAdvert class, 59
listAdverts task, 32
listener names and corresponding interfaces,

252–253
listeners field as instance of

SessionEventListenerConfig class, 252
listMessages task, 32
load listener

LoadEventListener interface, 253
load() method

Session interface, 71, 180
load-collection listener

InitializeCollectionEventListener interface, 253
LoadEventListener interface

load listener, 253
loading entities, lock mode, 71
LocalSessionFactory bean, 302
LocalSessionFactoryBean class, 303

dataSource property, 302
Spring represents the configured session

factory as, 301
lock listener

LockEventListener interface, 253
lock mode, loading entities, 71
lock() method

Session interface, 181
LockEventListener interface

lock listener, 253
locking, 185
LockMode class, 185
logic operators, 202
logical expressions

combining AND and OR restrictions, 215
orExp logical expression, 216

lt() method
Restrictions class, 215

■M
Machacek, Jan and Harrop, Rob

Pro Spring, 299

■INDEX328

6935idx_final.qxd 8/2/06 9:55 PM Page 328

managing the session, 308
mandatory constraints represented in mappings,

91
many-to-many association, 88–89

making the owner of an association, 69
mapping, 119–120

<many-to-many> element, 153
many-to-many relationships, 38

Category mapping, 43
link table represents, 47

many-to-one association
making the owner of an association, 69
mapping, 115, 117–118

<many-to-one> element, 153–155
attributes, 152–154

<map> collection element
introduction, 160–161

mapped superclasses, 123
mappedBy attribute, 66

@ManyToMany annotation, 119
@OneToMany annotation, 117
@OneToOne annotation, 115

mapping, 7, 139
<any> element, 177
<array> element, 177
associations, 84–85

applying to, 89
many-to-many association, 88–89
one-to-many association, 87–88
one-to-one association, 85–87

cannot be automated, 80
collections, 170–172
composition, 164–166
direct mapping, 246–247
<dynamic-component> element, 177
information represented, 90–91
inheritance relationships, 172

one table per class hierarchy, 175–176
one table per concrete class, 173
one table per subclass, 174–175

lazy loading, 83–84
mapping the Message POJO into database, 7
other associations, 167–169
overview, 79–80
primary keys, 82–83
putting SQL into mapping, 248–250
simple classes, 162–163
types of, 89
using views, 247–248

mapping documents, 20–21
<mapping> element, 19

attributes, 21
class attribute, 272
declarative mapping, 125
hibernate.cfg.xml file, 21

mapping files
adding node information to, 238, 240
<bag> element, 161–162
<class> element, 143, 145
collection elements, 155
<component> element, 143, 150–151

configuring Hibernate Console, 273
generating with Hibernate Console, 280
<hibernate-mapping> element, 141–143
<id> element, 146–148
<idbag> collection element, 159–160
introduction, 141
<list> collection element, 158–159
<many-to-one> element, 152–155
<map> collection element, 160–161
<one-to-one> element, 151–153
<property> element, 148–150
<set> collection element, 157–158

mapping with annotations, 93
benefits, 94–95
compounding primary keys with @Id, @IdClass

and @EmbeddedId, 105, 107–108, 110
code listings, 132, 136–137
configuring annotated classes, 125–126
cons of annotations, 94
database table mapping with @Table and

@SecondaryTable, 110–111
EJB 3 persistence annotations, 96–97, 100
generating primary key values with

@SequenceGenerator, 103
generating primary key values with

@TableGenerator, 104–105
inheritance, 120–122
large objects, 123
mapped superclasses, 123
mapping properties and fields with @Column,

112–113
modeling entity relationships, 113

mapping conventional one-to-one
relationship, 115–116
mapping embedded one-to-one
relationship, 114–115
mapping many-to-many relationship,
119–120
mapping many-to-one or one-to-many
relationship, 115, 117–118

named native queries (SQL), 125
named queries, 124–125
omitting persistence with @Transient, 112
persisting basic types with @Basic, 111–112
primary keys with @Id and GeneratedValue,

101–103
recommendations for using, 95
temporal data, 122
using Ant, 131–132
using in your application, 96

maps, 243–244
MatchMode class

org.hibernate.criterion package, 215
math operators, 202
max() function, 207

Projection class, 220
MckoiDialect class, 24
merge listener

MergeEventListener interface, 252
MERGE value

CascadeType enumeration, 116

■INDEX 329

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 329

merge() method
Session interface, 180

MergeEventListener interface
merge listener, 252

Message application
full text of application, 36

Message POJO class
creating for simple application, 35
mapping into database, 7

MimerSQLDialect class, 24
min() function, 207

Projection class, 220
min() function, 207
modeling entity relationships, 113

mapping conventional one-to-one association,
115–116

mapping embedded one-to-one association,
114–115

mapping many-to-many association, 119–120
mapping many-to-one or one-to-many

association, 115–118
multiple objects, persisting, 38
mutable attribute

@Entity annotation, 129
<class> element, 144, 156

MVC (model-view-controller)
web application framework provided in Spring,

299
MySQL5Dialect class, 24
MySQLDialect class, 24
MySQLInnoDBDialect class, 24
MySQLMyISAMDialect class, 24

■N
name attribute

@Column annotation, 112
@DiscriminatorColumn annotation, 121
@GenericGenerator annotation, 130
@JoinTable annotation, 118
<class> element, 144
collection elements, 156
<component> element, 150
<filter> element, 226
<id> element, 147
<many-to-one> element, 154
<one-to-one> element, 152
<property> element, 149

name field
User class, 43

named parameters, using in HQL, 203
named queries

HQL and SQL, 208–209
mapping, 124–125

NamedNativeQueries annotation, 128
NamedNativeQuery annotation, 128
NamedQueries annotation, 128
NamedQuery annotation, 128
names of entities and class types, 64–65
naming strategy, 21–22
namingstrategy attribute

<configuration> task element, 286
<ejb3configuration> task element, 287

NamingStrategy interface
org.hibernate.cfg package, 22

ne() method
Restrictions class, 214

nestedTransactionAllowed property
HibernateTransactionManager bean, 307

net.sf.hibernate package, 313
new operator, 63
node attribute

<class> element, 144, 242
collection elements, 156
<component> element, 150
<id> element, 147
<many-to-one> element, 154
mapping files, 238, 241
<one-to-one> element, 152
<property> element, 149

Node class
org.dom4j package, 240

nonrepeatable read, 183
NonUniqueResultException exception, 218

thrown by Query interface, uniqueResult()
method, 205

not-found attribute
<many-to-one> element, 154

not-null attribute
<many-to-one> element, 154
<property> element, 149

Notepad class
toString() method, 276

NotFound annotation, 128
NotFoundAction enumeration, 128
nullable attribute

@Column annotation, 113
@IndexColumn annotation, 129

■O
object mappings

Advert class, 44–45
Category class, 43
creating, 42
User class, 43

Object Relational Mapping. See ORM
object-oriented association

compared to relational association, 79
objects

deleting, 74
equality and identity, 70
loading, 72
querying, 77
refreshing, 72
saving, 70
updating, 73

OnDelete annotation, 128
onDelete interceptor method, 256
one-to-many association, 87–88

making the owner of an association, 69
mapping, 115–118

one-to-one association, 85–87
making the owner of an association, 69
mapping conventional relationships, 115–116
mapping embedded relationships, 114–115

■INDEX330

6935idx_final.qxd 8/2/06 9:55 PM Page 330

<one-to-one> element, 151–153
onFlushDirty interceptor method, 257
online billboard classes

creating for simple application, 38
onLoad interceptor method, 257
onSave interceptor method, 257, 261
openSession() method

SessionFactory class, 23
OpenSessionInView pattern

implementing, 308
OpenSessionInViewFilter bean, 308
optimistic locking, 185, 236–237
optimistic-lock attribute

<class> element, 145, 237
<collection> elements, 156
<component> element, 150
<many-to-one> element, 154
<property> element, 149

optimisticLock attribute
@Entity annotation, 129

optional attribute
@ManyToOne annotation, 118
@OneToOne annotation, 115

OR restriction, 215
with more than two different criteria, 216

or() method
Restrictions class, 216

Oracle9Dialect class, 25
OracleDialect class, 25
order by clause

sorting results, 205
Order class

asc() method, 218
desc() method, 218
org.hibernate.criterion package, 218

order-by attribute
<bag> element, 161
<idbag> collection element, 159
<map> collection element, 160
<set> collection element, 157

OrderBy annotation, 128
orExp logical expression, 216
org.dom4j package

Node class, 240
org.hibernate package, 313

Criteria interface, 196
Filter interface, 227
Hibernate 3 specific annotations, 95
Hibernate class, 77, 210
Interceptor interface, 258
Query interface, 196
Session interface, 15, 196, 316
SQLQuery interface, 210

org.hibernate.annotations package
annotations and enumerations, 128

org.hibernate.cache package
CacheProvider interface, 190

org.hibernate.cfg package
AnnotationConfiguration class, 125–126
Configuration class, 15, 286
DefaultNamingStrategy class, 22

ImprovedNamingStrategy class, 22
NamingStrategy interface, 22

org.hibernate.cfg.reveng package
ReverseEngineeringStrategy interface, 287, 292

org.hibernate.classic package
Session interface, 23, 316

org.hibernate.criterion package
Criterion interface, 214
Disjunction class, 216
Example class, 221
MatchMode class, 215
Order class, 218
Projection class, 220
ProjectionList class, 220
Restrictions class, 214

org.hibernate.event package
SaveOrUpdateEvent class, 70

org.hibernate.foo package
CompositeUserType interface, 141
UserType interface, 141

org.hibernate.hql.ast package
ASTQueryTranslatorFactory class, 315

org.hibernate.hql.classic package
ClassicQueryTranslatorFactory class, 315

org.hibernate.jmx package
HibernateServiceMBean interface, 14
StatisticsServiceMBean interface, 14

org.hibernate.persister.entity package, 249
org.hibernate.tool package, 317
org.hibernate.tool.hbm2ddl package

SchemaExport class, 317
org.hibernate.tool.hbm2x package

ArtifactCollector class, 296
Cfg2HbmTool class, 296
Cfg2JavaTool class, 296
Exporter interface, 295

org.hibernate.transform package
DistinctRootEntityResultTransformer class, 219

org.springframework.orm.hibernate package
Spring maintains, 301

org.springframework.orm.hibernate3 package
Spring maintains, 301

ORM (Object Relational Mapping), 1
accessing components with EntityManager,

233–236
description, 2
EJB 3 and, 233
origins, 3–4

outer-join attribute
collection elements, 156
<many-to-one> element, 154
<one-to-one> element, 152

outputdir scripting variable
Template task, 296

outputfilename attribute
<hbm2ddl> element, 288

■P
package attribute

<hibernate-mapping> element, 142
packagename attribute

<jdbcconfiguration> task element, 287

■INDEX 331

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 331

<param> element, 147
ParamDef annotation, 128
Parameter annotation, 128
parameters attribute

@GenericGenerator annotation, 130
password field

User class, 43
PERSIST value

CascadeType enumeration, 116
persist() method

EntityManager class, 235
Session interface, 180

persistence
persistence lifecycle, 63
problems with relational databases, 1

Persistence class
createEntityManagerFactory() method, 234

persistence classes, creating, 38–42
persistence lifecycle

cascading operations, 74–76
deleting entities, 74
entities

and associations, 65–69
classes and names, 64–65

identifiers, 65
introduction, 63–64
lazy loading, proxies and collection wrappers,

76–77
loading entities and objects, 71–72
object equality and identity, 70
querying objects, 77
refreshing objects, 72
saving entities, 69–70
updating entities and objects, 73

<persistence-unit> element, 234
persistent objects, 64
persister attribute

@Entity annotation, 129
<class> element, 145
collection elements, 156

persisting multiple objects, 38
pessimistic locking, 185
phantom read, 183
pkColumnName attribute

@TableGenerator annotation, 104
pkColumnValue attribute

@TableGenerator annotation, 104
Plain Old Java Objects. See POJOs
PointbaseDialect class, 25
POJOs

as entities, 139
creating persistence classes, 38–42
integrating and configuring Hibernate, 12
introduction, 1–2
lazy loading and Hibernate 2 and 3, 314
mapping Message POJO into database, 7
persistence lifecycle, 63

polymorphism attribute
@Entity annotation, 129
<class> element, 145

pool property
Connection object, 33

populateMessages task, 32
post-delete listener

PostDeleteEventListener interface, 253
pot-insert listener

PostInsertEventListener interface, 253
post-load listener

PostLoadEventListener interface, 253
post-update listener

PostUpdateEventListener interface, 253
PostAdvert class, 58
postAdverts task, 32
PostDeleteEventListener interface

post-delete listener, 253
postFlush interceptor method, 257
PostgreSQLDialect class, 25
PostInsertEventListener interface

post-insert listener, 253
PostLoadEventListener interface

post-load listener, 253
PostUpdateEventListener interface

post-update listener, 253
pre-delete listener

PreDeleteEventListener interface, 253
pre-insert listener

PreInsertEventListener interface, 253
pre-load listener

PreLoadEventListener interface, 253
pre-update listener

PreUpdateEventListener interface, 253
precision attribute

@Column annotation, 113
<property> element, 149

PreDeleteEventListener interface
pre-delete listener, 253

preFlush interceptor method, 257
PreInsertEventListener interface

pre-insert listener, 253
PreLoadEventListener interface

pre-load listener, 253
PreUpdateEventListener interface

pre-update listener, 253
primary keys, 82–83

and surrogate keys, 245
compounding with @Id, @IdClass and

@EmbeddedId, 105–108, 110
generating values with

@SequenceGenerator, 103
@TableGenerator annotation, 104–105
@Id and @GeneratedValue annotation,
102

represented in mappings, 91
with @Id and @GeneratedValue annotation,

101–103
PrimaryKeyJoinColumn class

javax.persistence package, 110
principle of least intrusiveness, 11
Pro Spring

Rob Harrop and Jan Machacek, 299
Product class, 197, 213
ProgressDialect class, 25
project directories

simple application, 32

■INDEX332

6935idx_final.qxd 8/2/06 9:55 PM Page 332

Projection class
org.hibernate.criterion package, 220
projectionList() method, 220

projection queries, 202
ProjectionList class

add() method, 220
org.hibernate.criterion package, 220

projectionList() method
Projection class, 220

projections, 220
Projections class

aggregate functions, 220
groupProperty() method, 221
property() method, 221

<properties> element, 234
<property> element, 19, 148, 163, 166

attributes, 148
child elements, 150

property() method
Projections class, 221

property-ref attribute
<many-to-one> element, 152, 154

propertyfile attribute
<configuration> task element, 286

proxies, 76–77
Proxy annotation, 128
proxy attribute

<class> element, 145

■Q
QBE (Query By Example), 213, 221

example, 222–223
queries, Criteria API, 213
query by example. See QBE
<query> element

properties, 291
Query interface

creating from the session, 48
executeUpdate() method, 207–208
org.hibernate package, 196
setEntity() method, 204
setFirstResult() method, 204
setMaxResults() method, 204–205
uniqueResult() method, 51, 205

Query Parameters, 278–279
querying objects, 77

■R
RDMSOS2200Dialect class, 25
Read Uncommitted isolation level

optimistic locks, 185
reconnect() method

Session interface, 181
refresh listener

RefreshEventListener interface, 253
REFRESH value

CascadeType enumeration, 116
refresh() method

HibernateTemplate class, 305
Session interface, 180

RefreshEventListener interface
refresh listener, 253

relational association compared to object-oriented
association, 79

REMOVE value
CascadeType enumeration, 116

ReplicateEventListener interface
replicate listener, 253

resource attribute
<mapping> element, 21

restrictions, using with Criteria API, 214–217
Restrictions class

conjunction() method, 216
disjunction() method, 216
eq() method, 214
ge() method, 215
gt() method, 215
ilike() method, 215
isNotNull() method, 215
isNull() method, 215
le() method, 215
like() method, 215
lt() method, 215
ne() method, 214
or() method, 216
org.hibernate.criterion package, 214
sqlRestriction() method, 216

revengfile attribute
<jdbcconfiguration> task element, 287, 292

reverse engineering
Ant tasks, 291–294
Hibernate Console, 282–284

ReverseEngineeringStrategy interface
methods, 292
org.hibernate.cfg.reveng package, 287

reversestrategy attribute
<jdbcconfiguration> task element, 287, 292

right outer join, 206
rowed attribute

<class> element, 145

■S
SAPDBDialect class, 25
save() method

HibernateTemplate class, 305
Session interface, 69–70, 180, 235, 254

save-update listener
SaveOrUpdateEventListener interface, 253

saveOrUpdate() method
HibernateTemplate class, 305
Session interface, 70, 180, 254

SaveOrUpdateEvent class
org.hibernate.event package, 70

SaveOrUpdateEventListener interface
implementing, 254
save-update listener, 253

scale attribute
@Column annotation, 113
<property> element, 149

schema attribute
@JoinTable annotation, 118
@TableGenerator annotation, 105

■INDEX 333

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 333

<class> element, 145
collection elements, 156
<hibernate-mapping> element, 142

<schema-selection> element, 293–294
SchemaExport class

org.hibernate.tool.hbm2ddl package, 317
select clause, 201
SELECT statements, 195, 219
select-before-update attribute

<class> element, 145
selectBeforeUpdate attribute

@Entity annotation, 129
SEQUENCE value

GeneratorType enumeration, 103
sequenceName attribute

@GeneratedValue annotation, 104
Serializable class, 111
serializable isolation level

pessimistic locks, 185
Session interface

and events, 253
and threads, 192
application accesses Hibernate’s representation

of database, 13
close() method, 23
createCriteria() method, 213
createQuery() method, 196
createSQLQuery() method, 210
creating, 23
delete() method, 74
EntityManager class used similarly to, 235
evict() method, 190
flush() method, 73, 182
get() method, 48, 250
getEntityName() method, 72
getFlushMode() method, 73
getIdentifier() method, 146
getSession() method, 240
introduction, 179
isDirty() method, 73
load() method, 71
loading entities, 71
methods, 63, 180–181
methods for working with filters, 227
org.hibernate package, 15, 316
org.hibernate.classic package, 316
refreshing objects, 72
retrieving from SessionFactory, 12
save() method, 235, 254
saveOrUpdate() method, 70, 254
saving entities, 69
setFlushMode() method, 73
update() method, 48
when to use EntityManager instead, 96

session management, 308–309
SessionEventListenerConfig class

listeners field as instance of, 252
SessionFactory class

as heavyweight object, 15
compared to ConnectionPool, 179
configuring with AnnotationConfiguration

class, 96

creating, 12, 14
dynamic-map entity mode, 139
EntityManagerFactory class corresponds to, 235
instantiating Session objects, 13
openSession() method, 23
sessions created from, 48

sessions, introduction, 179
Set class

java.util package, 43
<set> collection element, 43, 157

introduction, 157–158
set keyword, 207
setCacheMode() method

Session interface, 181
setEntity() method

Query interface, 204
setFirstResult() method

Criteria interface, 204, 217
Query interface, 204

setFlushMode() method
Session interface, 73, 181

setMaxResults() method
Criteria interface, 204, 217
Query interface, 204–205

setNamingStrategy() method
Configuration class, 22

setParameter() method
Filter interface, 227

setParameterList() methods
Filter interface, 227

setProjection() method
Criteria interface, 220

setReadOnly() method
Session interface, 181

simple application, 27
building DAOs, 52

AdException class, 52
AdvertDAO class, 55–56
CategoryDAO class, 54
UserDAO class, 52

creating Hibernate configuration file, 33–35
creating object mappings, 42

Advert class, 44–45
Category class, 43
User class, 43

creating tables, 45–47
example client, 56

CreateCategory class, 57
CreateUser class, 56
enhancing DAOs with Java 5 features, 60
ListAdvert class, 59
PostAdvert class, 58

installing tools, 27–28, 31
Ant tasks, 32
enabling logging, 28, 32
Hibernate, 27–28
HSQLDB database, 28

persistence, 38
creating persistence classes, 38–42
online billboard classes, 38

running message example, 35
creating sample message, 35

■INDEX334

6935idx_final.qxd 8/2/06 9:55 PM Page 334

Message application, 36
Message POJO class, 35
steps required, 37

sessions, 47
Session and related objects, 48, 50
using the Session, 50–51

SINGLE TABLE
inheritance approach to mapping hierarchies, 120

Software class, 199, 213
Sort annotation, 128
sort attribute

<map> collection element, 160
<set> collection element, 157

Spring Framework
configuring Hibernate from Spring

applications, 300–303
declarative transaction management, 306–307
managing the session, 309
sample configuration file begin, 309
sample configuration file end, 312
session management, 308–309
Spring libraries, 299–300
using Hibernate in Spring beans, 303–306

Spring JAR libraries, 300
SQL

and HQL, 193
commenting generated SQL, 200–201
logging underlying SQL in HQL queries, 200
mapping named native queries, 125
named queries, 208–209
putting into mapping, 248–250
using native SQL, 210–211

SQL dialects, 24–25
choosing for simple application, 33
class names for Hibernate 3, 24

SQL formula-based properties
represented in mappings, 91

SQL Functions
using in where clause, 202

<sql-delete> element, 249
<sql-insert> element, 249

invoking stored procedures, 251
<sql-update> element, 249
SQLQuery interface

methods, 210
org.hibernate package, 210

sqlRestriction() method
Restrictions class, 216

SQLServerDialect class, 25
static imports, Java 5 features, 93
StatisticsServiceMBean interface

org.hibernate.jmx package, 14
stored procedures, invoking, 251–252
strategy attribute

@GeneratedValue annotation, 102
@GenericGenerator annotation, 130
@Inheritance annotation, 120

Struts, supported by Spring, 299
<subclass> element, 139
subselect attribute

<class> element, 145
collection elements, 156

sum() aggregate function
Projection class, 220

sum() function, 207
Supplier class, 196
surrogate keys and primary keys, 245
Sybase11Dialect class, 25
SybaseAnywhereDialect class, 25
SybaseDialect class, 25

■T
Table annotation, 128
table attribute

@Column annotation, 113
@TableGenerator annotation, 105
<class> element, 145
collection elements, 156

<table> element, 293–294
TABLE value

GeneratorType enumeration, 103
<table-filter> element, 293–294
TABLE-PER-CLASS

inheritance approach to mapping hierarchies,
120

tables
creating, 45–47
relation between classes in object model, 245

Tables annotation, 128
targetEntity attribute

@ManyToMany annotation, 119
@ManyToOne annotation, 118
@OneToMany annotation, 117
@OneToOne annotation, 115

<taskdef> element, 285
template attribute

<hbmtemplate> element, 295
Template task

scripting variables available, 296
templatepath attribute

exporter elements support, 296
<hbmtemplate> element, 295

<templatePath> element, 286
templateprefix attribute

exporter elements support, 296
<hbmtemplate> element, 295

templates, Ant tasks, 294–296
template_path scripting variable

Template task, 296
temporal data, mapping, 122
TemporalType enumeration

javax.persistence package, 122
threads, introduction, 192
Time class

java.sql package, 122
Timestamp class

java.sql package, 122
TimesTenDialect class, 25
toString() method

Notepad class, 276
Transaction class, 182
transactions, 182

ACID tests, 183

■INDEX 335

Find
itfasterathttp://superindex.apress.com

/

6935idx_final.qxd 8/2/06 9:55 PM Page 335

obtaining Transaction object from database,
182

using global isolation level, 185
transient objects, 63

storing in the database, 69
triggers compared to interceptors, 256
Type annotation, 128
type attribute

<id> element, 147
<property> element, 149

<type-mapping> element, 293
TypeDef annotation, 128
TypeDefs annotation, 128
types

components, 140
entities, 139
values, 140

■U
unidirectional associations, 65
unique attribute

@Column annotation, 113
<component> element, 150
<many-to-one> element, 154
<property> element, 149

unique constraints
represented in mappings, 91

unique-key attribute
<many-to-one> element, 154

uniqueConstraints attribute
@TableGenerator annotation, 105

uniqueResult() method
Criteria interface, 217
Query interface, 205

uniqueResult()method
Query object, 51

unsaved-value attribute
<id> element, 147

updatable attribute
@Column annotation, 113

update attribute
<component> element, 150
<hbm2ddl> element, 288
<many-to-one> element, 154
<property> element, 149

UPDATE statements, 194
update() method

HibernateTemplate class, 305
Session interface, 48, 180

upgrading from Hibernate 2, 313
additions in version 3, 316
changes and deprecated features, 315–316
changes with Java 5, 317
changes to tools and libraries, 316
package and DTD changes, 313–314

User class
creating, 39
reflecting User object in database, 50
fields, 42
mapping to database, 43
retrieving User object from database, 50

UserDAO class, 57
building, 52

UserType interface
org.hibernate.foo package, 141

■V
Validatable interface

supported prior to Hibernate 3, 64
validate() method

Filter interface, 227
value attribute

@Temporal annotation, 122
valueColumnName attribute

@TableGenerator annotation, 105
values

creating custom values, 141
introduction, 140–141
standard value names, 140

vanilla JSPs, supported by Spring, 299
variable parameter lists, Java 5 features, 93
<version> element, 237
versioning, 236–237
views, using for mapping, 247–248

■W
WebSphere Application Developer (WSAD)

evolvement of Eclipse, 265
Where annotation, 128
where attribute

<class> element, 145
collection elements, 156

WHERE clause, 202
adding to query, 130
applying, 128
expressions used in, 202
setting condition corresponding to, 228
use of filters instead of, 225
using to delete entries, 208

WSAD (WebSphere Application Developer)
evolvement of Eclipse, 265

■X
XML configuration, 19–20
XML mappings

compared to mapping with annotations, 94–95
XM relational persistence, 238

adding node information to mappings, 238, 240
exporting XML entities, 240–241
importing XML entities, 242–243
other considerations when using XML entities,

243

■INDEX336

6935idx_final.qxd 8/2/06 9:55 PM Page 336

	Beginning Hibernate: From Novice to Professional
	Table of Content
	Chapter 1 An Introduction to Hibernate 3
	Chapter 2 Integrating and Configuring Hibernate.
	Chapter 3 Building a Simple Application
	Chapter 4 The Persistence Life Cycle
	Chapter 5 An Overview of Mapping
	Chapter 6 Mapping with Annotations
	Chapter 7 Creating Mappings with Hibernate XML Files
	Chapter 8 Using the Session
	Chapter 9 Searches and Queries
	Chapter 10 Advanced Queries Using Criteria
	Chapter 11 Filtering the Results of Searches
	Appendix A More Advanced Features
	Appendix B Hibernate Tools.
	Appendix C Hibernate and Spring
	Appendix D Upgrading from Hibernate 2
	Index

